Advertisement

Journal of Applied Mathematics and Computing

, Volume 59, Issue 1–2, pp 245–256 | Cite as

Wiener index of certain families of hexagonal chains

  • Andrey A. DobryninEmail author
  • Ehsan Estaji
Original Research
  • 116 Downloads

Abstract

The Wiener index is a topological index of a molecule, defined as the sum of distances between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule. Hexagonal chains consist of hexagonal rings connected with each other by edges. This class of graphs contains molecular graphs of unbranched catacondensed benzenoid hydrocarbons. A segment of a chain is its maximal subchain with linear connected hexagons. Chains with segments of equal lengths can be coded by binary words. Formulas for the sums of Wiener indices of hexagonal chains of some families are derived and computational examples are presented.

Keywords

Graph invariant Wiener index Hexagonal chain 

Mathematics Subject Classification

05C30 92E10 

References

  1. 1.
    Balaban, A.T.: Chemical graphs. L. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes. MATCH Commun. Math. Comput. Chem. 24, 9–38 (1989)zbMATHGoogle Scholar
  2. 2.
    Balaban, A.T., Motoc, I., Bonchev, D., Mekenyan, O.: Topological indices for structure–activity correlations. Top. Curr. Chem. 114, 21–55 (1983)CrossRefGoogle Scholar
  3. 3.
    Canfield, E.R., Robinson, R.W., Rouvray, D.H.: Determination of the Wiener molecular branching index for the general tree. J. Comput. Chem. 6, 598–609 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dehmer, M., Emmert-Streib, F. (eds.): Quantitative Graph Theory: Mathematical Foundations and Applications, Discrete Mathematics and Its Applications. Chapman and Hall/CRC, London (2014)Google Scholar
  5. 5.
    Devillers, J., Balaban, A.T. (eds.): Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, Reading (1999)Google Scholar
  6. 6.
    Diudea, M.V. (ed.): QSPR/QSAR Studies by Molecular Descriptors. Nova, Huntington (2001)Google Scholar
  7. 7.
    Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index for trees: theory and applications. Acta Appl. Math. 66(3), 211–249 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dobrynin, A.A., Gutman, I., Klavžar, S., Žigert, P.: Wiener index of hexagonal systems. Acta Appl. Math. 72(3), 247–294 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dobrynin, A.A.: On the Wiener index of fibonacenes. MATCH Commun. Math. Comput. Chem. 64(3), 707–726 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dobrynin, A.A.: On the Wiener index of certain families of fibonacenes. MATCH Commun. Math. Comput. Chem. 70(2), 565–574 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dobrynin, A.A.: Wiener index of hexagonal chains with segments of equal length. In: Dehmer, M., Emmert-Streib, F. (eds.) Quantitative Graph Theory: Mathematical Foundations and Applications, Discrete Mathematics and Its Applications, pp. 81–109. Chapman and Hall/CRC, London (2014)CrossRefGoogle Scholar
  12. 12.
    Entringer, R.C.: Distance in graphs: trees. J. Combin. Math. Combin. Comput. 24, 65–84 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gutman, I.: Topological properties of benzenoid systems. Topics Curr. Chem. 162, 21–28 (1992)Google Scholar
  14. 14.
    Gutman, I., Cyvin, S.J.: Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gutman, I., Klavžar, S.: Chemical graph theory of fibonacenes. MATCH Commun. Math. Comput. Chem. 55, 39–54 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gutman, I., Yeh, Y.N., Lee, S.L., Luo, Y.L.: Some recent results in the theory of the Wiener number. Indian J. Chem. 32A, 651–661 (1993)Google Scholar
  18. 18.
    Gutman, I., Furtula, B., (eds.): Distance in Molecular Graphs—Theory. Mathematical Chemistry Monographs, 12. University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2012)Google Scholar
  19. 19.
    Gutman, I., B. Furtula, B., (eds.): Distance in Molecular Graphs—Applications, Mathematical Chemistry Monographs, 13. University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2012)Google Scholar
  20. 20.
    Knor, M., Škrekovski, R., Tepeh, A.: Mathematical aspects of Wiener index. Ars Math. Contemp. 11(2), 327–352 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: developments and applications. Croat. Chem. Acta 68, 105–129 (1995)Google Scholar
  22. 22.
    Polansky, O.E., Bonchev, D.: The Wiener number of graphs. I. General theory and changes due to some graph operations. MATCH Commun. Math. Comput. Chem. 21, 133–186 (1986)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rouvray, D.H.: Should we have designs on topological indices? In: King, R.B. (ed.) Chemical Application of Topology and Graph Theory, pp. 159–177. Elsevier, Amsterdam (1983)Google Scholar
  24. 24.
    Rouvray, D.H.: The modeling of chemical phenomena using topological indices. J. Comput. Chem. 8, 470–480 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)CrossRefGoogle Scholar
  26. 26.
    Trinajstić, N.: Chemical Graph Theory. CRC Press, Boca Raton (1983, 1992)Google Scholar
  27. 27.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Department of Mathematics and Computer SciencesHakim Sabzevari UniversitySabzevarIran

Personalised recommendations