Skip to main content
Log in

Optimal dividends with an affine penalty

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We find the optimal dividend strategy in two related risk models under an affine penalty for ruin. The first risk model is the classical Cramér–Lundberg risk model, and the second is the so-called dual risk model. Under both models, for exponentially distributed jumps, we show that the optimal dividend strategy is a barrier strategy and obtain the barrier explicitly. Moreover, we prove that the optimal barrier increases with respect to the parameters of the affine penalty, while the penalized value function decreases with respect to the penalty. We also compute the expected time until ruin and show that the expected time of ruin increases with respect to the parameters of the affine penalty. Finally, we present some numerical examples to demonstrate the relationship between the results for the classical and dual risk models. Our main contributions are in comparing the classical and dual risk models side-by-side and in obtaining explicit expressions for the penalized value functions, the optimal barriers, and the expected times of ruin. Also, we contrast the free-boundary condition associated with the barrier strategies in the two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. If we are referring to an insurance company, then “expenses” refers to aggregate claims.

  2. Similarly, \(\tau ^{d, L} = \inf \{t \ge 0: X_t^{d, L} < 0 \} = \inf \{t \ge 0: X_t^{d, L} \le 0 \}\) is the time of ruin of the dual risk process \(X^{d, L}\). We can replace < by \(\le \) in the definition of \(\tau ^{d, L}\) because of the continual negative drift \(-\, c\) in the dual risk process.

  3. We write negativek and positiveq in the penalty function because when ruin occurs, the deficit x will be negative. Also, we write P(x) with these signs so that increasing k and q leads to “more penalty” in an intuitive sense. Otherwise, if we were to write \(+\, k\) in place of \(-\, k\), increasing k would increase the reward for ruin; instead, we want to think of P(x) as a penalty function. Alternatively, we could have written \(P(x) = k - qx\) and subtracted P(x) in (2.4).

  4. Loeffen and Renaud [25] slightly erred when determining the condition for which paying all surplus is optimal in the compound Poisson case. Essentially they forgot to include the second case in Theorem 3.2.

  5. When Y is distributed according to the exponential with parameter \(\alpha \), then this positivity condition becomes \(\lambda - \alpha c > 0\).

  6. Note that \(k = 0\) is consistent with (4.11) because we assume that \(\lambda - \alpha c > 0\).

  7. In this section, we use a subscript or superscript d to distinguish quantities in the dual risk model from the corresponding ones in the classical risk model. So, for example, we will write \(R_1^d\) to mean \(R_1\), as given in (3.8), with c replaced by \(c_d\).

References

  1. Avanzi, Benjamin: Strategies for dividend distribution: a review. N. Am. Actuar. J. 13(2), 217–251 (2009)

    Article  MathSciNet  Google Scholar 

  2. Avanzi, Benjamin, Gerber, Hans U.: Optimal dividends in the dual model with diffusion. ASTIN Bull. 38(2), 653–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avanzi, Benjamin, Gerber, Hans U., Shiu, Elias S.W.: Optimal dividends in the dual model. Insur. Math. Econ. 41(1), 111–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avram, Florin, Palmowski, Zbigniew, Pistorius, Martijn R.: On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17(1), 156–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avram, Florin, Palmowski, Zbigniew, Pistorius, Martijn R.: On Gerber–Shiu functions and optimal dividend distribution for a Lévy risk-process in the presence of a penalty function. Ann. Appl. Probab. 25(4), 1868–1935 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Albrecher, Hansjörg, Thonhauser, Stefan: Optimal dividend strategies for a risk process under force of interest. Insur. Math. Econ. 43(1), 134–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hansjörg, Albrecher, Thonhauser, Stefan: Optimality results for dividend problems in insurance. RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 103(2), 295–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azcue, Pablo, Muler, Nora: Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15(2), 261–308 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayraktar, Erhan, Kyprianou, Andreas E., Yamazaki, Kazutoshi: Optimal dividends in the dual model under transaction costs. Insur. Math. Econ. 54, 133–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bühlmann, Hans: Mathematical Methods in Risk Theory. Springer, Heidelberg (1970)

    MATH  Google Scholar 

  11. De Finetti, B.: Su unimpostazione alternativa della teoria collettiva del rischio. Trans. XVth Int. Congr. Actuar. 2(1), 433–443 (1957)

    Google Scholar 

  12. Dickson, David C.M., Waters, Howard R.: Some optimal dividends problems. ASTIN Bull. 34(1), 49–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dixit, Avinash: A simplified treatment of the theory of optimal regulation of Brownian motion. J. Econ. Dyn. Control 15(4), 657–673 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dufresne, Daniel: Fitting combinations of exponentials to probability distributions. Appl. Stoch. Models Bus. Ind. 23(1), 23–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumas, Bernard: Super contact and related optimality conditions. J. Econ. Dyn. Control 15(4), 675–685 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerber, Hans U., Sheldon Lin, X., Yang, Hailiang: A note on the dividends-penalty identity and the optimal dividend barrier. ASTIN Bull. 36(2), 489–503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerber, Hans U., Shiu, Elias S.W., Smith, Nathaniel: Maximizing dividends without bankruptcy. ASTIN Bull. 36(1), 5–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kulenko, Natalie, Schmidli, Hanspeter: Optimal dividend strategies in a Cramér–Lundberg model with capital injections. Insur. Math. Econ. 43(2), 270–278 (2008)

    Article  MATH  Google Scholar 

  19. Kyprianou, Andreas E., Palmowski, Zbigniew: Distributional study of De Finetti’s dividend problem for a general Lévy insurance risk process. J. Appl. Probab. 44, 428–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Yongwu, Li, Zhongfei, Zeng, Yan: Equilibrium dividend strategy with non-exponential discounting in a dual model. J. Optim. Theory Appl. 168(2), 699–722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, Zhibin, Young, Virginia R.: Dividends and reinsurance under a penalty for ruin. Insur. Math. Econ. 50(3), 437–445 (2012)

    Article  MATH  Google Scholar 

  22. Loeffen, Ronnie L.: On optimality of the barrier strategy in De Finetti’s dividend problem for spectrally negative Lévy processes. Ann. Appl. Probab. 18(5), 1669–1680 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loeffen, Ronnie L.: An optimal dividends problem with a terminal value for spectrally negative Lévy processes with a completely monotone jump density. J. Appl. Probab. 46(1), 85–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loeffen, Ronnie L.: An optimal dividends problem with transaction costs for spectrally negative Lévy processes. Insur. Math. Econ. 45(1), 41–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loeffen, Ronnie L., Renaud, Jean-François: De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insur. Math. Econ. 46(1), 98–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marciniak, Ewa, Palmowski, Zbigniew: On the optimal dividend problem for insurance risk models with surplus-dependent premiums. J. Optim. Theory Appl. 168(2), 723–742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ng, Andrew C.Y.: On a dual model with a dividend threshold. Insur. Math. Econ. 44(2), 315–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scheer, Natalie, Schmidli, Hanspeter: Optimal dividend strategies in a Cramér–Lundberg model with capital injections and administration costs. Eur. Actuar. J. 1(1), 57–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmidli, Hanspeter: On capital injections and dividends with tax in a classical risk model. Insur. Math. Econ. 71, 138–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shang, Yilun: Deffuant model with general opinion distributions: first impression and critical confidence bound. Complexity 19(2), 38–49 (2013)

    Article  MathSciNet  Google Scholar 

  31. Shang, Yilun: An agent based model for opinion dynamics with random confidence threshold. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3766–3777 (2014)

    Article  MathSciNet  Google Scholar 

  32. Thonhauser, Stefan, Albrecher, Hansjörg: Dividend maximization under consideration of the time value of ruin. Insur. Math.Econ. 41(1), 163–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vierkötter, Matthias, Schmidli, Hanspeter: On optimal dividends with exponential and linear penalty payments. Insur. Math. Econ. 72, 265–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, Dingjun, Yang, Hailiang, Wang, Rongming: Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs. Eur. J. Oper. Res. 211(3), 568–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Ming, Yiu, Ka Fai Cedric: Optimal dividend strategy with transaction costs for an upward jump model. Quant. Finance 14(6), 1097–1106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading and helpful comments on an earlier version of this paper, which led to a considerable improvement of the presentation of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhibin Liang thanks the National Natural Science Foundation of China (Grant No. 11471165) for financial support.

Virginia R. Young thanks the Nesbitt Chair of Actuarial Mathematics for partial financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Young, V.R. Optimal dividends with an affine penalty. J. Appl. Math. Comput. 60, 703–730 (2019). https://doi.org/10.1007/s12190-018-01233-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01233-y

Keywords

Mathematics Subject Classification

JEL Classification

Navigation