Skip to main content
Log in

Characterization and enumeration of complementary dual abelian codes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Abelian codes and complementary dual codes form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, a family of abelian codes with complementary dual in a group algebra \({\mathbb {F}}_{p^\nu }[G]\) has been studied under both the Euclidean and Hermitian inner products, where p is a prime, \(\nu \) is a positive integer and G is an arbitrary finite abelian group. Based on the discrete Fourier transform decomposition for semi-simple group algebras and properties of ideas in local group algebras, the characterization of such codes have been given. Subsequently, the number of complementary dual abelian codes in \({\mathbb {F}}_{p^\nu }[G]\) has been shown to be independent of the Sylow p-subgroup of G and it has been completely determined for every finite abelian group G. In some cases, a simplified formula for the enumeration has been provided as well. The known results for cyclic complementary dual codes can be viewed as corollaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, S.: Students ask the darnedest things: a result in elementary group theory. Math. Mag. 70, 207–211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, S.D.: Semi-simple cyclic and abelian codes. Kibernetika 3, 21–30 (1967)

    Google Scholar 

  3. Bernal, J.J., Simón, J.J.: Information sets from defining sets in abelian codes. IEEE Trans. Inf. Theory 57, 7990–7999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C., Guilley, S.: Complementary dual codes for countermeasures to side-channel attacks. Coding Theory Appl. 3, 97–105 (2015)

    Article  MATH  Google Scholar 

  5. Carlet, C., Daif, A., Danger, J.L., Guilley, S., Najm, Z., Ngo, X.T., Portebouef, T., Tavernier, C.: Optimized linear complementary codes implementation for hardware trojan prevention. In: Proceedings of European Conference on Circuit Theory and Design, 2015 August 24–26; Trondheim, Norway. Piscataway, USA: IEEE (2015)

  6. Chabanne, H.: Permutation decoding of abelian codes. IEEE Trans. Inf. Theory 38, 1826–1829 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, C., Kohel, D.R., Ling, S.: Split group codes. IEEE Trans. Inf. Theory 46, 485–495 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Etesami, J., Hu, F., Henkel, W.: LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding. In: Proceedings of IEEE Globecom, 2011 December 5–9, Texas, USA. Piscataway, USA: IEEE (2011)

  10. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-017-0330-z

  11. Hazewinkel, M., Gubareni, N., Kirichenko, V.V.: Algebras, Rings and Modules. Vol. 1, Mathematics and its Applications, vol. 575. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  12. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: CRYPTO, Vol. 2729 of Lecture Notes in Computer Science, pp. 463–481. Springer, August 1721 2003, Santa Barbara, CA, USA

  13. Jitman, S., Ling, S.: Quasi-abelian codes. Des. Codes Cryptogr. 74, 511–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jitman, S., Ling, S., Liu, H., Xie, X.: Abelian codes in principal ideal group algebras. IEEE Trans. Inf. Theory 59, 3046–3058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jitman, S., Ling, S., Solé, P.: Hermitian self-dual Abelian codes. IEEE Trans. Inf. Theory 60, 1496–1507 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martinez, E., Rua, I.F.: Multivariable codes over finite chain rings: serial codes. SIAM J. Discrete Math. 20, 947–959 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106/107, 337–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moree, P.: On the divisors of \(a^k+b^k\). Acta Arithmet. LXXX, 197–212 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ngo, X.T., Guilley, S., Bhasin, S., Danger, J.L., Najm, Z.: Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses. In: Proceedings of WESS ’14, 2014 October 12–17, New Delhi, India. New York, ACM (2014)

  20. Ngo, X.T., Bhasin, S., Danger, J.L., Guilley, S., and Najm, Z.: Linear complementary dual code improvement to strengthen encoded cirucit against Hardware Trojan Horses. In: Proceedings of IEEE International Symposium on Hardware Oriented Security and Trust (HOST): 2015 May 2015, Washington DC Metropolitan Area, USA. Piscataway, USA: IEEE (2015)

  21. Nicholson, W.K.: Local group rings. Can. Math. Bull. 15, 137–138 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Palines, H.S., Jitman, S., Dela Cruz, R.B.: Hermitian self-dual quasi-abelian codes. J. Algebra Comb. Discrete Struct. Appl. https://doi.org/10.13069/jacodesmath.327399

  23. Rajan, B.S., Siddiqi, M.U.: Transform domain characterization of abelian codes. IEEE Trans. Inf. Theory 38, 1817–1821 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sabin, R.E.: On determining all codes in semi-simple group rings. Lect. Notes Comput. Sci. 673, 279–290 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sendrier, N.: Linear codes with complementary duals meet the Gilber–Varshamov bound. Discrete Math. 285, 345–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. Discrete Math. 126, 391–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somphong Jitman.

Additional information

This research was supported by the Thailand Research Fund under Research Grant MRG6080012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boripan, A., Jitman, S. & Udomkavanich, P. Characterization and enumeration of complementary dual abelian codes. J. Appl. Math. Comput. 58, 527–544 (2018). https://doi.org/10.1007/s12190-017-1155-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1155-7

Keywords

Mathematics Subject Classification

Navigation