Journal of Applied Mathematics and Computing

, Volume 58, Issue 1–2, pp 193–217

# A saddle point characterization of efficient solutions for interval optimization problems

Original Research

## Abstract

In this article, we attempt to characterize efficient solutions of constrained interval optimization problems. Towards this aim, at first, we study a scalarization characterization to capture efficient solutions. Then, with the help of saddle point of a newly introduced Lagrangian function, we investigate efficient solutions of an interval optimization problem. Several parts of the results are supported with numerical and pictorial illustration.

## Keywords

Interval optimization Efficient solution Lagrangian function Saddle point

90C30 65K05

## References

1. 1.
Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problems. Math. Methods Oper. Res. 76(3), 273–288 (2012)
2. 2.
Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–10 (2014)
3. 3.
Chalco-Cano, Y., Lodwick, W.A., Rufian-Lizana, A.: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Mak. 12(3), 305–322 (2013)
4. 4.
Chen, S.H., Wu, J., Chen, Y.D.: Interval optimization for uncertain structures. Finite Elem. Anal. Des. 40, 1379–1398 (2004)
5. 5.
Cheng, J., Liu, Z., Wu, Z., Tang, M., Tan, J.: Direct optimization of uncertain structures based on degree of interval constraint violation. Comput. Struct. 164, 83–94 (2016)
6. 6.
Chalco-Cano, Y., Rufian-Lizana, A., Roman-Flores, H., Jimenez-Gamero, M.D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219, 49–67 (2013)
7. 7.
Frits, E.R., Rev, E., Lelkes, Z., Markot, M., Csendes, T.: Application of an interval optimization method for studying feasibility of batch extractive distillation. In: Proceedings of the International Workshop on Global Optimization, Almeria, pp. 103–108 (2005)Google Scholar
8. 8.
Ghosh, D.: Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J. Appl. Math. Comput. 53, 709–731 (2016)
9. 9.
Ghosh, D.: A Newton method for capturing efficient solutions of interval optimization problems. Opesearch 53, 648–665 (2017)
10. 10.
Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)
11. 11.
Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)
12. 12.
Ghosh, D., Chakraborty, D.: A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. J. Intell. Fuzzy Syst. 26, 1223–1234 (2014)
13. 13.
Ghosh, D., Chakraborty, D.: A new Pareto set generating method for multi-criteria optimization problems. Oper. Res. Lett. 42, 514–521 (2014)
14. 14.
Ghosh, D., Chakraborty, D.: A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets Syst. 272, 1–29 (2015)
15. 15.
Ghosh, D., Chakraborty, D.: Quadratic interpolation technique to minimize univariable fuzzy functions. Int. J. Appl. Comput. Math. 3(2), 527–547 (2017)
16. 16.
Hong, F.-X., Li, D.-F.: Nonlinear programming method for interval-valued $$n$$-person cooperative games. Oper. Res. Int. J. 17(2), 479–497 (2017)
17. 17.
Kumar, P.: Inventory model with price-dependent demand rate and no shortages: an interval-valued linear fractional programming approach. Oper. Res. Appl. Int. J. 2(4), 1–14 (2015)Google Scholar
18. 18.
Oliveria, C., Antunes, C.H.: Multiple objective linear programming models with interval coefficients-an illustrated review. Eur. J. Oper. Res. 181, 1434–1463 (2007)
19. 19.
Singh, D., Dar, B.A., Goyal, A.: KKT optimality conditions for interval-valued optimization problems. J. Nonlinear Anal. Optim. 5(2), 91–103 (2014)
20. 20.
Wang, H., Zhang, R.: Optimality conditions and duality for arcwise connected interval optimization problems. Opsearch 52(4), 870–883 (2015)
21. 21.
Wu, H.C.: The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176(1), 46–59 (2007)
22. 22.
Wu, H.C.: Dulity theory for optimization problems with interval-valued objective fuction. J. Optim. Theory Appl. 144(3), 615–628 (2010)
23. 23.
Wu, H.C.: Duality theory in interval-valued linear programming problems. J. Optim. Theory Appl. 150, 298–316 (2011)
24. 24.
Ying, Z.-Y., Xi, Y.-G., Zhang, Z.-J.: Test on reachability of a Robot to an object. In: The Proceedings of IEEE International Conference on Robotics and Automation, IEEE Xplore (2002)Google Scholar
25. 25.
Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8(2), 607–631 (2012)

© Korean Society for Computational and Applied Mathematics 2017

## Authors and Affiliations

• Debdulal Ghosh
• 1
• Debdas Ghosh
• 2
• Sushil Kumar Bhuiya
• 1
• Lakshmi Kanta Patra
• 1
1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia
2. 2.Department of Mathematical SciencesIndian Institute of Technology (BHU)VaranasiIndia

## Personalised recommendations 