Advertisement

SVEIRS epidemic model with delays and partial immunization for internet worms

Original Research
  • 128 Downloads

Abstract

A delayed SVEIRS model for the transmission of worms in internet with partial immunization is proposed. The impact of the possible combination of the two delays on the model is investigated. By analyzing the corresponding characteristic equations and regarding the possible combination of the two delays as the bifurcation parameter, local stability of the endemic equilibrium and existence of local Hopf bifurcation at the viral equilibrium are addressed, respectively. Further, explicit formulas that determine direction and stability of the Hopf bifurcation are derived with the help of the normal form theory and the center manifold theorem. Finally, some numerical simulations are carried out to verify the obtained theoretical findings.

Keywords

Delays Hopf bifurcation SVEIRS model Periodic solutions 

Notes

Acknowledgements

The authors are grateful to the editor and the anonymous referees for their valuable comments and suggestions on the paper.

References

  1. 1.
    Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the internet: a statistical physics approach. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Mishra, B.K., Keshri, N.: Mathematical model on the transmission of worms in wireless sensor network. Appl. Math. Model. 37, 4103–4111 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Xiao, X., Fu, P., Dou, C.S., Li, Q., Hu, G.W., Xia, S.T.: Design and analysis of SEIQR worm propagation model in mobile internet. Commun. Nonlinear Sci. Numer. Simul. 43, 341–350 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188, 1476–1482 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217, 8438–8446 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    Chen, T., Jamil, N.: Effectiveness of quarantine in worm epidemics. In: IEEE International Conference on Communications IEEE, pp. 2142–2147 (2006)Google Scholar
  7. 7.
    Mishra, B.K., Jha, N.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34, 710–715 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yao, Y., Guo, L., Guo, H., Yu, G., Gao, F., Tong, X.: Pulse quarantine strategy of internet worm propagation: modeling and analysis. Comput. Electr. Eng. 38, 1047–1061 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, F.W., Zhang, Y.K., Wang, C.G., Ma, J.F., Moon, S.J.: Stability analysis of a SEIQV epidemic model for rapid spreading worms. Comput. Secur. 29, 410–418 (2010)CrossRefGoogle Scholar
  10. 10.
    Peltomki, M., Ovaska, M., Alava, M.: Worm spreading with immunization: an interplay of spreading and immunity time scales. Phys. A 390, 4152–4159 (2011)CrossRefGoogle Scholar
  11. 11.
    Datta, S., Wang, H.: The effectiveness of vaccination on the spread of email-borne computer virus. In: IEEE CCECE/CCGEI, IEE, pp. 219–223 (2005)Google Scholar
  12. 12.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worm propagation in computer network. Appl. Math. Model. 38, 2173–2179 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, F.W., Yang, Y., Zhao, D.M., Zhang, Y.K.: A worm defending model with partial immunization and its stability analysis. J. Commun. 10, 276–283 (2015)CrossRefGoogle Scholar
  14. 14.
    Yuan, S.L., Song, Y.L.: Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system. J. Math. Anal. Appl. 355, 82–100 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Saha, T., Chakrabarti, C.: Dynamical analysis of a delayed ratio-dependent Holling–Tanner Predator–prey model. J. Math. Anal. Appl. 258, 389–402 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Zhang, J.F.: Bifurcation analysis of a modified Holling–Tanner predator–prey model with time delay. Appl. Math. Model. 36, 1219–1231 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ren, J.G., Yang, X.F., Yang, L.X., Xu, Y.H., Yang, F.Z.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45, 74–79 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Feng, L.P., Liao, X.F., Li, H.Q., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56, 167–179 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dong, T., Liao, X. F., Li, H. Q.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012, Article ID 841987, 16 (2012)Google Scholar
  20. 20.
    Yao, Y., Xie, X.W., Guo, H., Yu, G., Gao, F.X., Tong, X.J.: Hopf bifurcation in an Internet worm propagation model with time delay in quarantine. Math. Comput. Model. 57, 2635–2646 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Liu, J.: Hopf bifurcation in a delayed SEIQRS model for the transmission of mali-cious objects in computer network. J. Appl. Math. 2014, Article ID 492198, 8 (2014)Google Scholar
  22. 22.
    Li, C. D., Hu, W. F., Huang, T. W.: Stability and bifurcation analysis of a modified epidemic model for computer viruses. Math. Probl. Eng. 2014, Article ID 784684, 14 (2014)Google Scholar
  23. 23.
    Bianca, C., Ferrara, M., Gurrini, L.: The time delays’ effects on the qualitative behavior of an economic growth model. Abstr. Appl. Anal. 2013, Article ID 901014, 10 (2013)Google Scholar
  24. 24.
    Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Meng, X.Y., Huo, H.F., Xiang, H.: Hopf bifurcation in a three-species system with delays. J. Appl. Math. Comput. 35, 635–661 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Deng, L.W., Wang, X.D., Peng, M.: Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator. Appl. Math. Comput. 231, 214–230 (2014)MathSciNetGoogle Scholar
  27. 27.
    Javidmanesh, E., Afsharnezhad, Z., Effati, S.: Existence and stability analysis of bifurcating periodic solutions in a delayed five-neuron BAM neural network model. Nonlinear Dyn. 72, 149–164 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Xu, C.J., Tang, X.H., Liao, M.X.: Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays. Neurocomputing 74, 689–707 (2011)CrossRefGoogle Scholar
  29. 29.
    Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Numerical studies for fractional-order Logistic differential equation with two different delays. J. Appl. Math. Article ID 764894, 14 (2012)Google Scholar
  30. 30.
    Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay dierential equations of fracctional order. J. Fract. Calc. Appl. 1, 1–9 (2011)Google Scholar
  31. 31.
    Evans, D.J., Raslan, K.R.: The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 82, 49–54 (2005)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Bildik, N., Deniz, S.: A new efficient method for solving delay differential equations and a comparison with other methods. Eur. Phys. J. Plus 132, 51 (2017)CrossRefGoogle Scholar
  33. 33.
    Bildik, N., Deniz, S.: Comparison of solutions of systems of delay differential equations using Taylor collocation method, Lambert W function and variational iteration method. Sci. Iran. Trans. D Comput. Sci. Eng. Electr. 22, 1052–1060 (2015)Google Scholar
  34. 34.
    Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)MATHGoogle Scholar
  35. 35.
    Ferrara, M., Guerrini, L., Bisci, G.M.: Center manifold reduction and perturbation method in a delayed model with a mund-shaped cobb-douglas production function. Abstr. Appl. Anal. Article ID 738460, 6 (2013)Google Scholar
  36. 36.
    Gori, L., Gurrini, L., Sodini, M.: Hopf bifurcation in a Cobweb model with discrete time delays. Discrete Dyn. Nat. Soc. Article ID 137090, 8 (2014)Google Scholar
  37. 37.
    Bianca, C., Ferrara, M., Gurrini, L.: The Cai model with time delay: existence of periodic solutions and asymptotic analysis. Appl. Math. Inf. Sci. 7, 21–27 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2017

Authors and Affiliations

  1. 1.School of Management Science and EngineeringAnhui University of Finance and EconomicsBengbuChina

Personalised recommendations