A new generalization of the KMOV cryptosystem

Original Research
  • 53 Downloads

Abstract

The KMOV scheme is a public key cryptosystem based on an RSA modulus \(n=pq\) where p and q are large prime numbers with \(p\equiv q\equiv 2\pmod 3\). It uses the points of an elliptic curve with equation \(y^2\equiv x^3+b\pmod n\). In this paper, we propose a generalization of the KMOV cryptosystem with a prime power modulus of the form \(n=p^{r}q^{s}\) and study its resistance to the known attacks.

Keywords

KMOV cryptosystem Elliptic curves Prime power modulus 

Mathematics Subject Classification

94A60 

References

  1. 1.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46(2), 203–213 (1999)MathSciNetMATHGoogle Scholar
  2. 2.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). In: Advances in Cryptology. Eurocrypt’99, Lecture Notes in Computer Science 1592, pp. 1–11. Springer, Berlin (1999)Google Scholar
  3. 3.
    Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring \(N = p^rq\) for Large \(r\). In: Wiener, M. (ed.) Crypto’99. Lecture Notes in Computer Science 1666, pp. 326–337. Springer, Berlin (1999)Google Scholar
  4. 4.
    Compaq Computer Corporation: Cryptography Using Compaq MultiPrime Technology in a Parallel Processing Environment (2000)Google Scholar
  5. 5.
    Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. Lecture Notes in Computer Science 765, pp. 40–49. Springer, Berlin (1994)Google Scholar
  6. 6.
    Fujioka, A., Okamoto, T., Miyaguchi, S.: ESIGN: an efficient digital signature implementation for smard cards. In: Eurocrypt 1991. Lecture Notes in Computer Science 547, pp. 446–457. Springer, Berlin (1991)Google Scholar
  7. 7.
    Hinek, M.J.: Cryptanalysis of RSA and Its Variants. Chapman & Hall/CRC Cryptography and Network Security. CRC Press, Boca Raton (2010)Google Scholar
  8. 8.
    Ibrahimpasic, B.: Cryptanalysis of KMOV cryptosystem with short secret exponent. In: Central European Conference on Information and Intelligent Systems, CECIIS (2008)Google Scholar
  9. 9.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  10. 10.
    Joux, A., Odlyzko, A., Pierrot, C.: The past, evolving present, and future of the discrete logarithm. In: Koç, C.K. (ed.) Open Problems in Mathematics and Computational Science, pp. 5–36. Springer, Berlin (2014)Google Scholar
  11. 11.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koyama, K.: Fast RSA type scheme based on singular cubic curve \(y^{2}+axy=x^{3} (\text{mod} \; n)\). In: Proceedings of Eurocrypt’95. Lecture Notes in Computer Science 921, pp. 329–339. Springer, Berlin (1995)Google Scholar
  13. 13.
    Koyama, K., Maurer, U.M., Okamoto, T., Vanstone S.A., : New public-key schemes based on elliptic curves over the ring \({\mathbb{Z}}_{n}\). In: Advances in Cryptology—Crypto’91. Lecture Notes in Computer Science, pp. 252–266. Springer, Berlin (1991)Google Scholar
  14. 14.
    Kuwakado, H., Koyama, K., Tsuruoka, Y.: A new RSA-type scheme based on singular cubic curves \(y^{2}\equiv x^{3}+bx^{2} (\text{ mod } \; n)\). IEICE Trans. Fundam. E78–A, 27–33 (1995)Google Scholar
  15. 15.
    Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Lim, S., Kim, S., Yie, I., Lee, H.: A generalized Takagi-Cryptosystem with a modulus of the form \(p^{r}q^{s}\). In: Advances in Cryptography—Proceedings of Indocrypt 1998. Lecture Notes in Computer Science 1977, pp. 283–294. Springer, Berlin (2000)Google Scholar
  18. 18.
    Lu, Y., Peng, L., Sarkar, S.: Cryptanalysis of an RSA variant with Moduli \(N= p^rq\). In: Charpin, P., Sendrier, N., Tillich, J.-P. (eds.) The 9th International Workshop on Coding and Cryptography 2015 WCC2015, Apr 2015, France, Paris (2016)Google Scholar
  19. 19.
    Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown divisors: revisited. In: Iwata, T., Cheon, J. (eds.) Advances in Cryptology—ASIACRYPT 2015. Lecture Notes in Computer Science 9452. Springer, Berlin (2015)Google Scholar
  20. 20.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology—CRYPTO’85. Lecture Notes in Computer Science, vol. 218, pp. 417–426. Springer, Berlin (1986)Google Scholar
  21. 21.
    Nitaj, A.: A new attack on the KMOV cryptosystem. Bull. Korean Math. Soc. 51(5), 1347–1356 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Okamoto, T., Uchiyama, S.: A New public key cryptosystem as secure as factoring. In: Eurocrypt 1998. Lecture Notes in Computer Science 1403, pp. 308–318 (1998)Google Scholar
  23. 23.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Schmitt, S., Zimmer, H.G.: Elliptic Curves: A Computational Approach. Walter de Gruyter, Berlin (2003)MATHGoogle Scholar
  25. 25.
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod \(p\). Math. Comput. 44, 483–494 (1985)MathSciNetMATHGoogle Scholar
  26. 26.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin. GTM 106, 1986, Expanded 2nd edn (2009)Google Scholar
  27. 27.
    Takagi, T.: Fast RSA-type cryptosystem modulo \(p^{k}q\). In: Advances in Cryptography—Proceedings of CRYPTO 1998. Lecture Notes in Computer Science 1462, pp. 318–326. Springer, Berlin (1998)Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2017

Authors and Affiliations

  1. 1.Université de MonastirMonastirTunisia
  2. 2.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen NormandieCaenFrance

Personalised recommendations