Skip to main content

Advertisement

Log in

Analyzing on stability of HIV-PI model with general incidence rate

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, we have constructed a PI model with general incidence rate and humoral immunity. We have analyzed about the equilibrium points in general case. Using appropriate Lyapunov functional and Lasalle’s invariance principle, the global stability of the newly constructed model have been discussed. Using patient data we have discussed about the model numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fauci, A.S.: HIV and AIDS: 20 years of science. Nat. Med. 9, 839–843 (2003)

    Article  Google Scholar 

  2. Anderson, R.M., Gupta, S., May, R.M.: Potential of community—wide chemotherapy or immunotherapy to control the spread of HIV-1. Nat. Lond. 350, 356–359 (1991)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M., Mclean, A.R.: Possible demographic consequences of AIDS in developing countries. Nature 332, 228–234 (1988)

    Article  Google Scholar 

  4. Blower, S.M.: Behavior changes and stabilization of seroprevalence levels, correlation or causation. JAIDS 4, 920–923 (1991)

    Google Scholar 

  5. Blower, S.M., Hartel, D., Dowlatabadi, H., Anderson, R.M., May, R.M.: Sex, drugs & HIV: a mathematical model for New York City. Philos. Trans. R. Soc. Lond. B 331, 171–187 (1991)

    Article  Google Scholar 

  6. Dietz, K., Hadeler, K.P.: Epidemiology models for sexually transmitted diseases. J. Math. Biol. 26, 1–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacquez, J.A., Simon, C.P., Koopman, J., Sattenspiel, L., Perry, T.: Modelling and analysis HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119–199 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koopman, J., Simon, C., Jacquez, J., et al.: Sexual partner selectiveness effects on homosexual HIV transmission dynamics. JAIDS 1, 486–504 (1988)

    Google Scholar 

  9. Le Pont, F., Blower, S.M.: The supply & demand dynamics of sexual behavior: implications for a heterosexual HIV epidemic. JAIDS 4, 987–999 (1991)

    Google Scholar 

  10. May, R.M., Anderson, R.M., Blower, S.M.: The epidemiology and transmission dynamics of HIV/AIDS. Daedalus 118(2), 163–201 (1989)

    Google Scholar 

  11. Blower, S.M., Medley, G.F.: Epidemiology, HIV & drugs: Mathematical models & data. Br. J. Addict. 87, 31–39 (1992)

    Article  Google Scholar 

  12. Ray, M., Logan, R., Sterne, J.A., HIV-CAUSAL Collaboration et al.: The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 24, 123–137 (2010)

  13. Nakagawa, F., Lodwick, R.K., Smith, C.J., et al.: Projected life expectancy of people with HIV according to timing of diagnosis. AIDS 26, 335–343 (2012)

    Article  Google Scholar 

  14. Archin, N.M., Vaidya, N.K., Kuruc, J.D., et al.: Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proc. Natl. Acad. Sci. USA 109, 9523–9528 (2012)

    Article  Google Scholar 

  15. Taiwo, B., Matining, R.M., Zheng, L., et al.: Associations of T cell activation and infl ammatory biomarkers with virological response to darunavir/ritonavir plus raltegravir therapy. J. Antimicrob. Chemother. 68, 1857–1861 (2013)

    Article  Google Scholar 

  16. Janeway, C., Travers, P., Walport, M., Shlomchik, M.: Immunobiology: The Immune System in Health and Diseases. Garland Science, London (2006)

    Google Scholar 

  17. Carpenter, C.: Universal access to antiretroviral therapy: when, not if. Clin. Infect. Dis. 42, 260–261 (2006)

    Article  Google Scholar 

  18. Calmy, A., Petoumenos, K., Lewden, C., Law, M., Bocquentin, F., Hesse, K., Cooper, D., Carr, A., Bonnet, F.: Combination antiretroviral therapy without a nucleoside reverse transcriptase inhibitor: experience from 334 patients in three cohorts. HIV Med. 8, 171–180 (2007)

    Article  Google Scholar 

  19. Chiyaka, C., Garira, W., Dube, S.: Modelling immune response and drug therapy in human malaria infection. Comput. Math. Methods Med. 9, 143–163 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Culshaw, R.V., Ruan, S.G., Spiteri, R.J.: Optimal HIV treatment by maximising immune response. J. Math. Biol. 48, 545–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, Y., Min, L.Q., Zheng, Y., Su, Y.M.: A viral infection model with periodic immune response and nonlinear CTL response. Math. Comput. Simul. 80, 2309–2316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, M.Y., Shu, H.Y.: Global dynamics of a mathematical model for HTLV-1 infection of CD4+T cells with delayed CTL response. Nonlinear Anal. Real World Appl. 13, 1080–1092 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Song, X.Y., Wang, S.L., Dong, J.: Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response. J. Math. Anal. Appl. 373, 345–355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, S.L., Song, X.Y., Ge, Z.H.: Dynamics analysis of a delayed viral infection model with immune impairment. Appl. Math. Model. 35, 4877–4885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, K.F., Wang, W.D., Liu, X.N.: Global stability in a viral infection model with lytic and nonlytic immune responses. Comput. Math. Appl. 51, 1593–1610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, Q.Z., Huang, D.W., Zhang, S.D., Cao, J.: Analysis of a viral infection model with delayed immune response. Appl. Math. Model. 34, 2388–2395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakata, Y.: Global dynamics of a cell mediated immunity in viral infection models with distributed delays. J. Math. Anal. Appl. 375, 14–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data. Math. Biosci. 235, 98–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, S.F., Zou, D.Y.: Global stability of in-host viral models with humoral immunity and intracellular delays. Appl. Math. Model. 36, 1313–1322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z.P., Xu, R.: Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response. Commun. Nonlinear Sci. Numer. Simul. 17, 964–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yous, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection. J. Math. Biol. 63, 933–957 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, H.Y., Luo, Y., Chen, M.L.: Stability and Hopf bifurcation of a HIV infection model with CTL-response delay. Comput. Math. Appl. 62, 3091–3102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, H.Y., Zou, X.F.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discret. Contin. Dyn. Syst. B 12, 511–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deans, J.A., Cohen, S.: Immunology of malaria. Annu. Rev. Microbiol. 37, 25–50 (1983)

    Article  Google Scholar 

  35. Hattaf, K., Lashari, A.A., Louartassi, Y., Yousfi, n: A delayed SIR epidemic model with general incidence rate. Electron. J. Qual. Theory Differ. Equ. 3, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ouifki, R., Witten, G.: Stability analysis of a model for HIV infection with RTI and three intracellular delays. BioSystems 95, 16 (2009)

    Article  Google Scholar 

  37. Yang, X., Chen, L., Chen, J.: Permanance and positive periodic solution for the single species non autonomous delay diffusion models. Comput. Math. Appl. 32, 109–116 (1996)

    Article  MathSciNet  Google Scholar 

  38. LaSalle, J.P.: The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, USA (1976)

Download references

Acknowledgements

The financial assistance from UGC, BSR Fellowship, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Divya.

Appendix A

Appendix A

Now we consider the Lyapunov functional of the form,

$$\begin{aligned} W (t)= & {} W_{T^*}(t) + e^{m_1 \tau _1} I^* H \left( \frac{I(t)}{I^*} \right) + e^{m_1 \tau _1 + m_2 \tau _2} {V_I}^* H\\&\times \left( \frac{V_I(t)}{{V_I}^*} \right) + e^{m_1 \tau _1 + m_2 \tau _2} {V_{NI}}^* H \left( \frac{V_{NI}(t)}{{V_{NI}}^*} \right) \\&+\, \frac{q}{g} e^{m_1 \tau _1 + m_2 \tau _2} B(t)+ \int \limits _{t - \tau _1}^{t} \left[ f(T^*,V^*) V^* H \left( \dfrac{f(T(\theta ), V(\theta ))V(\theta )}{f(T^*,V^*)V^*} \right) \right] d \theta \\&+\, N \delta e^{m_1 \tau _1} \int \limits _{t - \tau _2}^{t} \left[ I^* H \left( \dfrac{I(\theta )}{I^*} \right) \right] , \end{aligned}$$

where

$$\begin{aligned} H(x) = x - 1 - \text{ ln } x, \end{aligned}$$

and

$$\begin{aligned} W_{T^*}(t) = T(t) - T^* - \int \limits _{T^*}^{T} \dfrac{f(T^*,V^*)}{f(s,V^*)} ds. \end{aligned}$$

Then the derivative of the Lyapunov functional is,

$$\begin{aligned} W ' (t) =&\left( 1- \frac{f(T^*,{V_I}^*)}{f(T(t),{V_I}^*)} \right) T'(t) + e^{m_1 \tau _1} \left( 1 - \frac{I^*}{I(t)} \right) I'(t) \\&+\, e^{m_1 \tau _1+m_2 \tau _2} \left( 1 - \frac{{V_I}^*}{{V_I}(t)} \right) {V_I}'(t)\\&+\, e^{m_1 \tau _1+m_2 \tau _2} \left( 1 - \frac{{V_{NI}}^*}{{V_{NI}}(t)} \right) {V_{NI}}'(t) + \frac{q}{g} e^{m_1 \tau _1+m_2 \tau _2} B'(t) \\&+\, f(T^*,{V_I}^*){V_I}^* H\left( \frac{f(T(t),V_I(t))V_I(t)}{f(T^*,{V_I}^*) {V_I}^*} \right) \\&-\, f(T^*,{V_I}^*){V_I}^* H\left( \frac{f(T(t-\tau _1),V_I(t-\tau _1))V_I(t-\tau _1)}{f(T^*,{V_I}^*) {V_I}^*} \right) \\&+\,e^{m_2 \tau _2} I^* H \left( \frac{I(t)}{I^*} \right) \\&-\, N \delta e^{m_1 \tau _1} I^* H\left( \frac{I(t - \tau _2)}{I^*}\right) , \end{aligned}$$
$$\begin{aligned} =&\left( 1 - \frac{f(T^*,{V_I}^*)}{f(T(t),{V_I}^*)}\right) [s - d_T T(t)- f(T(t),V_I(t))V_I(t)] \\&+\, e^{m_1 \tau _1} \left( 1 - \frac{I^*}{I(t)} \right) [e^{-m_1 \tau _1} f(T(t-\tau _1), V_I(t - \tau _1)) V_I(t - \tau _1) -\delta I(t)] \\&+\, e^{m_1 \tau _1 +m_2 \tau _2} \left( 1 - \frac{{V_I}^*}{V_I(t)}\right) [e^{-m_2 \tau _2} (1 - \epsilon _p) N \delta I(t - \tau _2) -c V_I(t) - q B(t) V_I(t)]\\&+\, e^{m_1 \tau _1 +m_2 \tau _2} \left( 1 - \frac{{V_{NI}}^*}{V_{NI}(t)}\right) [e^{-m_2 \tau _2} \epsilon _p N \delta I(t - \tau _2) -c V_{NI}(t) - q B(t) V_{NI}(t)] \\&+\, \frac{q}{g} e^{m_1 \tau _1 +m_2 \tau _2} [g B(t) V_I (t) + g B(t) V_{NI}(t) -r B(t)] + f(T(t),V_I(t))V_I(t) \\&-\, f(T^*,{V_I}^*){V_I}^* \; \text{ ln } \left( \frac{f(T(t), V_I(t)) V_I(t)}{f(T^*,{V_I}^*){V_I}^* }\right) - f(T(t-\tau _1), V_I(t - \tau _1)) V_I(t - \tau _1) \\&+\, f(T^*,{V_I}^*){V_I}^* \; \ln \left( \frac{f(T(t - \tau _1), V_I(t- \tau _1)) V_I(t - \tau _1)}{f(T^*,{V_I}^*){V_I}^* }\right) \\&+\, e^{m_2 \tau _2} I(t) -e^{m_2 \tau _2} I(t-\tau _2) - e^{m_1 \tau _1} \ln \left( \frac{I(t)}{I^*} \right) + N \delta e^{m_1 \tau _1} \ln \left( \frac{I(t- \tau _2)}{I^*} \right) , \end{aligned}$$
$$\begin{aligned} =&d_T [T^* - T]\left( 1 - \frac{f(T^*,{V_I}^*)}{f(T(t),{V_I}^*)}\right) + f(T^*,{V_I}^*){V_I}^* - f(T(t),V_I(t))V_I(t) \\&-\, f(T^*,{V_I}^*){V_I}^* \left( \frac{f(T^*,{V_I}^*)}{f(T(t),{V_I}^*)}\right) + f(T(t),V_I(t)) V_I(t) \left( \frac{f(T^*,{V_I}^*)}{f(T(t),{V_I}^*)}\right) \\&f(T(t- \tau _1), V_I(t- \tau _1))V_I(t-\tau _1) - \left( \frac{I^*}{I(T)} \right) f(T(t- \tau _1), V_I(t- \tau _1))V_I(t-\tau _1)\\&-\,\delta e^{m_1 \tau _1} I(t) + \delta e^{m_1 \tau _1} I*- \epsilon _p N \delta e^{m_1 \tau _1} I(t-\tau _2) +N \delta e^{m_1 \tau _1} I(t - \tau _2) \\&- e^{m_1 \tau _1} N \delta (1 - \epsilon _p) \left( \frac{{V_I}^*}{V_I (t)}\right) I(t - \tau _2) - c e^{m_1 \tau _1 +m_2 \tau _2} V_I (t) + c e^{m_1 \tau _1 +m_2 \tau _2} {V_I}^* \\&-\, q e^{m_1 \tau _1 +m_2 \tau _2} B(t) V_I(t) + q e^{m_1 \tau _1 +m_2 \tau _2} B(t) {V_I}^* + \epsilon N \delta e^{m_1 \tau _1} I(t - \tau _2) \\&- N \delta \epsilon _p e^{m_1 \tau _1} \left( \frac{{V_{NI}}^*}{V_{NI}} \right) I(t - \tau _2) - c e^{m_1 \tau _1 +m_2 \tau _2} V_{NI} + c e^{m_1 \tau _1 +m_2 \tau _2} {V_{NI}}^* \\&-\, q e^{m_1 \tau _1 +m_2 \tau _2} B(t) V_{NI}(t) + q e^{m_1 \tau _1 +m_2 \tau _2} B(t) {V_{NI}}^* + q e^{m_1 \tau _1 +m_2 \tau _2} B(t) V_I(t) \\&+\, q e^{m_1 \tau _1 +m_2 \tau _2} B(t) V_{NI} (t) - \frac{r}{g} e^{m_1 \tau _1 +m_2 \tau _2} B(t) + f(T(t), V_I(t)) V_I(t) \\&-T(t- \tau _1),V_I(t- \tau _1)) V_I(t- \tau _1) + N \delta e^{m_1 \tau _1} I(t) - N \delta e^{m_1 \tau _1} I(t - \tau _2) \\&- f(T^*, {V_I}^*) {V_I}^* \ln \left( \frac{f(T(t),V_I(t)) V_I(t)}{f(T(t- \tau _1),V_I(t- \tau _1)) V_I(t- \tau _1)} \right) \\&- N \delta e^{m_1 \tau _1} \ln \left( \frac{I(t)}{I(t - \tau _2} \right) . \end{aligned}$$

Since,

  1. (i)

    \(f(T^*,{V_I}^*){V_I}^* = \delta e^{m_1 \tau _1} I^* = \dfrac{c e^{m_1 \tau _1 + m_2 \tau _2}}{N \epsilon _p} {V_I}^*\),

  2. (ii)

    f(TV) is strictly monotonically increasing with respect to T,

  3. (iii)

    f(TV) is strictly monotonically decreasing with respect to V, and

  4. (iv)

    f(TV)V is monotonically increasing with respect to V,

from the above discussion we get \(W'(t)\le 0\). Clearly \(W(t) =0\) iff \(T=T^*,I=I^*, V_I = {V_I}^*\) and \( V_{NI} = {V_{NI}}^*\). Let \(M_1\) be the largest invarient subspace of \(\{(T,I,V_I,V_{NI},B)| W'=0\}\). For each point in \(M_1\), we have \(V_I ' =0, V_{NI}' = 0\) and \(B = 0\), so \(M_1\) includes a unique point, the equilibrium \(E_1\). By using Lasalle’s invariance principle, \(E_1\) is globally asymptotically stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, M., Pitchaimani, M. Analyzing on stability of HIV-PI model with general incidence rate. J. Appl. Math. Comput. 56, 269–287 (2018). https://doi.org/10.1007/s12190-016-1073-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1073-0

Keywords

Mathematics Subject Classification

Navigation