Skip to main content
Log in

Finite time stability analysis of systems based on delayed exponential matrix

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we analyze finite time stability for a class of differential equations with finite delay. Some sufficient conditions for the finite time stability results are derived based on delayed matrix exponential approach and Jensen’s and Coppel’s inequalities. Finally, we demonstrate the validity of designed method and make some discussions by using a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, Q., Liu, X.Z.: Exponential stability for implusive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462–473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, Q., Liu, X.Z.: Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method. Appl. Math. Lett. 20, 839–845 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Zhang, G.L., Song, M.H., Liu, M.Z.: Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J. Compu. Appl. Math. 285, 32–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lazarević, M.P., Debeljković, D., Nenadić, Z.: Finite-time stability of delayed systems. IMA J. Math. Control. Inf. 17, 101–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay system: Grownwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MATH  Google Scholar 

  7. Wang, Q., Lu, D.C., Fang, Y.Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Debeljković, D., Stojanović, S., Jovanović, A.: Further results on finite time and practical stability of linear continuous time delay systems. FME Trans. 41, 241–249 (2013)

    Google Scholar 

  9. Debeljković, D., Stojanović, S., Jovanović, A.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013)

    Google Scholar 

  10. Gu, K.: An integral inequality in the stability problem of time-delay systems, decision and control. In: Proceedings of the 39th IEEE Conference, IEEE, vol. 3, pp. 2805–2810 (2000)

  11. Debeljkovic, D.L., Stojanovic, S.B., Jovanovic, A.M.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013)

    Google Scholar 

  12. Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 84, 2117–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37, 1459–1463 (2001)

    Article  MATH  Google Scholar 

  14. Liu, H., Zhou, G., Lei, T., Tian, F.: Finite-time stability of linear time-varying continuous system with time-delay, In: 27th Proceeding of Chinese Control and Decision Conference, vol. 23–25, pp. 6063–6068 (2015)

  15. Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model. 34, 3631–3641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A.: Exponential \(H_{\infty }\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci. China Technol. Sci. 59, 387–402 (2016)

    Article  Google Scholar 

  17. Li, D., Cao, J.: Global finite-time output feedback synchronization for a class of high-order nonlinear systems. Nonlinear Dynam. 82, 1027–1037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, Y., Cao, J., Alofi, A., Abdullah, A.L.M., Elaiw, A.: Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Netw. 69, 135–143 (2015)

    Article  Google Scholar 

  19. Khusainov, DYa., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina. 17, 101–108 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Khusainov, DYa., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. J. Appl. Math. 2, 210–221 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Medveď, M., Pospišil, M., Škripková, L.: Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. 74, 3903–3911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Medveď, M., Pospišil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 75, 3348–3363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diblík, J., Fečkan, M., Pospišil, M.: Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diblík, J., Khusainov, DYa., Baštinec, J., Sirenko, A.S.: Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 51, 68–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lozinskii, S.M.: Error estimate for numerical integration of ordinary differential equations. I. Izv. Vyssh. Uchebn. Zved., Mat. 5, 52–90 (1958)

    MATH  Google Scholar 

  26. Dahlquist, G.: Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, vol. 130. Trans. Roy. Inst. Tech., Stokholm (1959)

    MATH  Google Scholar 

  27. Coppel, W.A.: Stability and asymptotic behavior of differential equations. DC Heath, Boston (1965)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. The authors thank the help from the editor too. The authors acknowledge Training Object of High Level and Innovative Talents of Guizhou Province ((2016) 4006), Unite Foundation of Guizhou Province ([2015] 7640) and Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014] 240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Wang, J. Finite time stability analysis of systems based on delayed exponential matrix. J. Appl. Math. Comput. 55, 335–351 (2017). https://doi.org/10.1007/s12190-016-1039-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1039-2

Keywords

Mathematics Subject Classification

Navigation