Skip to main content
Log in

Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we establish sufficient conditions for the existence and uniqueness of solutions for a boundary value problem of fractional differential equations with nonlocal and average type integral boundary conditions. The Leray–Schauder nonlinear alternative, Krasnoselskii’s fixed point theorem and Banach’s fixed point theorem together with Hölder inequality are applied to construct proofs for the main results. Examples illustrating the obtained results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  3. Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  4. Konjik, S., Oparnica, L., Zorica, D.: Waves in viscoelastic media described by a linear fractional model. Integral Trans. Spec. Funct. 22, 283–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, X.J., Hristov, J., Srivastava, H.M., Ahmad, B.: Modelling fractal waves on shallow water surfaces via local fractional Kortewegde Vries equation, Abstr. Appl. Anal., Article ID 278672, (2014)

  6. Punzo, F., Terrone, G.: On the Cauchy problem for a general fractional porous medium equation with variable density. Nonlinear Anal. 98, 27–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 47, 54–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Webb, J.R.L., Infante, G.: Non-local boundary value problems of arbitrary order. J. Lond. Math. Soc. 79, 238–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodrich, C.: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61, 191–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, Z.B., Sun, W.: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63, 1369–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, L., Wang, G., Ahmad, B., Agarwal, R.P.: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ahmad, B., Ntouyas, S.K.: Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theor. Differ. Equ. 9(20), 51–60 (2013)

    MathSciNet  MATH  Google Scholar 

  14. O’Regan, D., Stanek, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71, 641–652 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graef, J.R., Kong, L., Wang, M.: Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 17, 499–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, G., Liu, S., Zhang, L.: Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., Article ID 916260, (2014)

  17. Liu, X., Liu, Z., Fu, X.: Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, 446–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bolojan-Nica, O., Infante, G., Precup, R.: Existence results for systems with coupled nonlocal initial conditions. Nonlinear Anal. 94, 231–242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhai, C., Xu, L.: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820–2827 (2014)

    Article  MathSciNet  Google Scholar 

  20. Yan, R., Sun, S., Lu, H., Zhao, Y.: Existence of solutions for fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2014, 25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahmad, B., Ntouyas, S.K., Alsaedi, A., Alzahrani, F.: New fractional-order multivalued problems with nonlocal nonlinear flux type integral boundary conditions. Bound. Value Probl. 2015, 83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmad, B., Ntouyas, S.K.: On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. 47, 119–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, L., Zhang, S., Shi, A.: Existence result for nonlinear fractional differential equation with \(p\)-Laplacian operator at resonance. J. Appl. Math. Comput. 48, 519–532 (2015)

  24. Foukrach, D., Moussaoui, T., Ntouyas, S.K.: Existence and uniqueness results for a class of BVPs for a nonlinear fractional differential equations depending on the fractional derivative. Georgian Math. J. 22(1), 45–55 (2015)

    Article  MATH  Google Scholar 

  25. Picone, M.: Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine. Ann. Scuola Norm. Super. Pisa Cl. Sci. 10, 1–95 (1908)

    MathSciNet  MATH  Google Scholar 

  26. Whyburn, W.M.: Differential equations with general boundary conditions. Bull. Am. Math. Soc. 48, 692–704 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bitsadze, A., Samarskii, A.: On some simple generalizations of linear elliptic boundary problems. Russian Acad. Sci. Dokl. Math. 10, 398–400 (1969)

    MATH  Google Scholar 

  28. Ahmad, B., Alsaedi, A., Alghamdi, B.S.: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 9, 1727–1740 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Čiegis, R., Bugajev, A.: Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 17, 253–270 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2005)

    MATH  Google Scholar 

  31. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk. 10, 123–127 (1955)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their constructive remarks that led to the improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Ntouyas, S.K. & Alsaedi, A. Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions. J. Appl. Math. Comput. 53, 129–145 (2017). https://doi.org/10.1007/s12190-015-0960-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0960-0

Keywords

Mathematics Subject Classifications

Navigation