Skip to main content
Log in

On Dirichlet two-point boundary value problems for the Ermakov–Painlevé IV equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Two-point boundary value problems of Dirichlet-type are investigated for a hybrid Ermakov–Painlevé IV equation. Existence and uniqueness results are established in terms of the Painlevé parameters. In addition, it is shown how Ermakov invariants may be used to systematically obtain solutions of a coupled Ermakov–Painlevé IV system in terms of seed solutions of the canonical integrable Painlevé IV equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conte, R. (ed.): The Painlevé Property: One Century Later. Springer, New York (1999)

    MATH  Google Scholar 

  2. Clarkson, P.A.: Painlevé equations. Nonlinear special functions. J. Comput. Appl. Math. 153, 127–140 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ray, J.R.: Nonlinear superposition law for generalised Ermakov systems. Phys. Lett. A 78, 4–6 (1980)

    Article  MathSciNet  Google Scholar 

  4. Reid, J.L., Ray, J.R.: Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion. J. Math. Phys. 21, 1583–1587 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rogers, C., Hoenselaers, C., Ray, J.R.: On 2+1-dimensional Ermakov systems. J. Phys. A Math. Gen. 26, 2625–2633 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rogers, C., Schief, W.K.: Multi-component Ermakov systems: structure and linearization. J. Math. Anal. Appl. 198, 194–220 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schief, W.K., Rogers, C., Bassom, A.P.: Ermakov systems with arbitrary order and dimension: structure and linearization. J. Phys. A Math. Gen. 29, 903–911 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goncharenko, A.M., Logvin, Y.A., Samson, A.M., Shapovalov, P.S., Turovets, S.I.: Ermakov Hamiltonian systems in nonlinear optics of elliptic Gaussian beams. Phys. Lett. A 160, 138–142 (1991)

    Article  MathSciNet  Google Scholar 

  9. Rogers, C., An, H.: Ermakov–Ray–Reid systems in 2+1-dimensional rotating shallow water theory. Stud. Appl. Math. 125, 275–299 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Rogers, C., Malomed, B., Chow, K.W., An, H.: Ermakov–Ray–Reid systems in nonlinear optics. J. Phys. A Math. Theor. 43, 455214 (2010)

    Article  MathSciNet  Google Scholar 

  11. Rogers, C., Schief, W.K.: The pulsrodon in 2+1-dimensional magnetogasdynamics. Hamiltonian–Ermakov reduction. J. Math. Phys. 52, 083701 (2011)

    Article  MathSciNet  Google Scholar 

  12. Rogers, C., Schief, W.K.: On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system. Nonlinearity 24, 3165–3178 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rogers, C., Malomed, B., An, H.: Ermakov–Ray–Reid reductions of variational approximations in nonlinear optics. Stud. Appl. Math. 129, 389–413 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schief, W.K., An, H., Rogers, C.: Universal and integrable aspects of an elliptic vortex representation in 2+1-dimensional magnetogasdynamics. Stud. Appl. Math. 130, 49–79 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Athorne, C., Rogers, C., Ramgulam, U., Osbaldestin, A.: On linearisation of the Ermakov system. Phys. Lett. A 143, 207–212 (1990)

    Article  MathSciNet  Google Scholar 

  16. Rogers, C.: On a coupled nonlinear Schrödinger system. A Ermakov connection. Stud. Appl. Math. 132(3), 247–265 (2014)

  17. Mariani, M.C., Amster, P., Rogers, C.: Dirichlet and periodic-type boundary value problems for Painlevé II. J. Math. Anal. Appl. 265, 1–11 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Amster, P., Mariani, M.C., Rogers, C., Tisdell, C.C.: On two-point boundary value problems in multi-ion electrodiffusion. J. Math. Anal. Appl. 289, 712–721 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Amster, P., Kwong, M.K., Rogers, C.: On a Neumann boundary value problem for the Painlevé II equation in two-ion electrodiffusion. Nonlinear Anal. 74, 2897–2907 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Amster, P., Kwong, M.K., Rogers, C.: A Neumann boundary value problem in two-ion electrodiffusion with unequal valencies. Discrete Contin. Dyn. Syst. 17, 2299–2311 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Amster, P., Kwong, M.K., Rogers, C.: A Painlevé II model in two-ion electrodiffusion with radiation boundary conditions. Nonlinear Anal. Real World Appl. 16, 120–131 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rogers, C.: Hybrid Ermakov–Painlevé IV systems, submitted (2014)

  23. Bassom, A.P., Clarkson, P.A., Hicks, A.C., Mcleod, J.B.: Integral relations and exact solutions for the fourth Painlevé equation. Proc. R. Soc. Lond. A 437, 1–24 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bassom, A.P., Clarkson, P.A., Hicks, A.C.: Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95, 1–71 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Amster, P., Rogers, C.: On a Ermakov–Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem, submitted (2014)

  26. Gromak, V.I.: Bäcklund transformations of Painlevé equations and their applications. In: Conte, R. (ed.) The Painlevé Property. One Century Later. CRM Series in Mathematical Physics. Springer, New York, pp 687–734 (1999)

Download references

Acknowledgments

The authors thank Prof. D. Rial and the anonymous referee for the careful reading of the manuscript and their insightful remarks. This paper was partially supported by projects UBACyT 20020120100029BA and PIP 11220090100637 CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Amster.

Appendix: Coupled Ermakov–Painlevé IV system

Appendix: Coupled Ermakov–Painlevé IV system

The importance of the Ermakov–Painlevé equation (1.1) as a canonical form is emphasised here by establishing its role in the construction of solution sets of an overarching coupled Ermakov–Painlevé IV system. It is remarked that Ermakov–Painlevé IV type systems have recently derived in [22] as symmetry reductions of coupled derivative nonlinear Schrödinger systems such as arise in plasma physics.

Here, we consider the hybrid two-component Ermakov–Painlevé IV system

$$\begin{aligned}&\displaystyle u_{xx} - \left[ \dfrac{3}{4} (u^2 + v^2 )^2 + 2x ( u^2 + v^2 ) + x^2 - \alpha \right] u = \dfrac{\beta }{2u^3}, \nonumber \\&\displaystyle v_{xx} - \left[ \dfrac{3}{4} (u^2 + v^2 )^2 + 2x ( u^2 + v^2 ) + x^2 - \alpha \right] v = \dfrac{\beta }{2v^3}. \end{aligned}$$
(5.1)

This is seen to admit a characteristic Ermakov invariant

$$\begin{aligned} ( u_x v - v_x u )^2 + \frac{\beta }{2}\ \left[ \left( \frac{u}{v} \right) ^2 + \left( \frac{v}{u} \right) ^2 \right] = \mathcal {E} \end{aligned}$$
(5.2)

together with the (non-local) Hamiltonian

$$\begin{aligned} u^2_x + v^2_x - \frac{1}{4} \Sigma ^3 - 2 \int x \Sigma d \Sigma - \int (x^2 - \alpha ) d \Sigma + \frac{\beta }{2}\ \left[ \frac{1}{u^2} + \frac{1}{v^2} \right] = 2 \mathcal {H}. \end{aligned}$$
(5.3)

where \(\Sigma :=u^2+v^2\).

The identity

$$\begin{aligned} \left( u^2 + v^2\right) \left( u^2_x + v^2_x\right) - \left( u_x v - v_x u\right) ^2 \equiv \left( uu_x + vv_x\right) ^2 \end{aligned}$$
(5.4)

is now used together with the Ermakov and Hamiltonian invariant relations (5.2), (5.3) to show that

$$\begin{aligned}&\Sigma \ \left[ \ 2 \mathcal {H} + \dfrac{1}{4} \Sigma ^3 + 2 \displaystyle \int x \Sigma d \Sigma + \displaystyle \int (x^2 - \alpha ) d \Sigma - \dfrac{\beta }{2}\ \left( \dfrac{1}{u^2} + \dfrac{1}{v^2} \right) \ \right] \nonumber \\&\quad \quad \quad - \left[ \mathcal {E} - \dfrac{\beta }{2} \left( \left( \dfrac{u}{v} \right) ^2 + \left( \dfrac{v}{u} \right) ^2 \right) \right] = \dfrac{1}{4} \left( \dfrac{d \Sigma }{dx} \right) ^2, \end{aligned}$$
(5.5)

whence,

$$\begin{aligned} \Sigma \ \left[ \ 2 \mathcal {H} + \dfrac{1}{4} \Sigma ^3 + 2 \int x \Sigma d \Sigma + \int (x^2 - \alpha ) d \Sigma \ \right] - \mathcal {E} - \beta = \dfrac{1}{4} \left( \frac{d \Sigma }{dx} \right) ^2. \end{aligned}$$
(5.6)

The latter, in turn, leads to a Painlevé IV equation in \(\Sigma \), namely

$$\begin{aligned} \Sigma _{xx} = \frac{1}{2} \frac{\Sigma ^2_x}{\Sigma } + \frac{3}{2} \Sigma ^3 + 4 x \Sigma ^2 + 2 ( x^2 - \alpha ) \Sigma + \frac{2}{\Sigma } ( \mathcal {E} + \beta ) \end{aligned}$$
(5.7)

which, in terms of \(\Lambda = \Sigma ^{1/2}\) produces the canonical Ermakov–Painlevé IV equation

$$\begin{aligned} \Lambda _{xx} - \left[ \ \frac{3}{4} \Lambda ^4 + 2 x \Lambda ^2 + x^2 - \alpha \ \right] \Lambda = \frac{\mathcal {E} + \beta }{\Lambda ^3}. \end{aligned}$$
(5.8)

Importantly, the latter together with each in turn of the constituent nonlinear equations in the original Ermakov–Painlevé IV system (5.1) constitute Ermakov–Ray-Reid systems. This result in an additional pair of Ermakov–type invariant relations, viz

$$\begin{aligned} \left( u_x \Lambda - \Lambda _x u\right) ^2 + \left( \mathcal {E} + \beta \right) \left( \frac{u}{\Lambda } \right) ^2 + \frac{\beta }{2} \left( \frac{\Lambda }{u} \right) ^2 = \mathbb {R}_\mathrm{I}, \end{aligned}$$
(5.9)

and

$$\begin{aligned} ( v_x \Lambda - \Lambda _x v )^2 + ( \mathcal {E} + \beta ) \left( \frac{v}{\Lambda } \right) ^2 + \frac{\beta }{2} \left( \frac{\Lambda }{v} \right) ^2 = \mathbb {R}_\mathrm{II}. \end{aligned}$$
(5.10)

Thus, on introduction of the new independent variable \(\bar{x}\) according to

$$\begin{aligned} d \bar{x} = \Lambda ^{-2} dx, \end{aligned}$$
(5.11)

and new dependent variables \(U,\ V\) via

$$\begin{aligned} U = \left( \frac{u}{\Lambda } \right) ^2, \quad V = \left( \frac{v}{\Lambda } \right) ^2 \end{aligned}$$
(5.12)

it is seen that (5.9) and (5.10), in turn, yield

$$\begin{aligned} d U^{1/2}/ d \bar{x} = \pm \sqrt{ \mathbb {R}_\mathrm{I} - ( \mathcal {E} + \beta ) U - \frac{\beta }{2} U^{-1}}, \end{aligned}$$
(5.13)

and

$$\begin{aligned} d V^{1/2}/ d \bar{x} = \pm \sqrt{ \mathbb {R}_\mathrm{II} - ( \mathcal {E} + \beta ) V - \frac{\beta }{2} V^{-1}}. \end{aligned}$$
(5.14)

The latter pair show that, if \(\mathcal {E} + \beta > 0\) then

$$\begin{aligned} U = \frac{1}{2( \mathcal {E} + \beta )}\ \left[ \mathbb {R}_\mathrm{I} + \sqrt{ \mathbb {R}^2_\mathrm{I} - 2 \beta ( \mathcal {E} + \beta )} \sin \left( \pm 2 \sqrt{ \mathcal {E} + \beta }\ \bar{x} + \mathbb {K}_\mathrm{I} \right) \right] \end{aligned}$$
(5.15)

and

$$\begin{aligned} V = \frac{1}{2( \mathcal {E} + \beta )}\ \left[ \mathbb {R}_\mathrm{II} + \sqrt{ \mathbb {R}^2_\mathrm{II} - 2 \beta ( \mathcal {E} + \beta )} \sin \left( \pm 2 \sqrt{ \mathcal {E} + \beta }\ \bar{x} + \mathbb {K}_\mathrm{II} \right) \right] \end{aligned}$$
(5.16)

where \(\mathbb {K}_\mathrm{I}\) and \(\mathbb {K}_\mathrm{II}\) are constants of integration and it is required that \(\mathbb {R}^2_\mathrm{I} > 2 \beta (\mathcal {E} + \beta ),\,\mathbb {R}^2_\mathrm{II} > 2 \beta (\mathcal {E} + \beta )\). The relations (5.15), (5.16) are subject to the constraint \(U + V = 1\) and the latter relation may be used to calculate \(V\) in terms of \(U\) as given by (5.15) without recourse to (5.14). Moreover, addition of the integrals of motion (5.9), (5.10) together with use of the identity (5.4) and of the Ermakov invariant relation (5.2) is seen to impose the constraint

$$\begin{aligned} \mathbb {R}_\mathrm{I} + \mathbb {R}_\mathrm{II} = 2 \left( \mathcal {E} + \beta \right) . \end{aligned}$$
(5.17)

In summary, solution pairs \(\{u, v\}\) of the Ermakov–Painlevé IV system (5.1) may be constructed in terms of a seed solution \(\Sigma \) of the canonical Painlevé IV equation (5.7) via relation

$$\begin{aligned} u = \pm \sqrt{ \frac{1}{2 (\mathcal {E} + \beta )} \left( \mathbb {R}_\mathrm{I} + \sqrt{ \mathbb {R}^2_\mathrm{I} - 2\beta (\mathcal {E} + \beta )} \sin \left( \pm 2 \sqrt{\mathcal {E} + \beta } \bar{x} + \mathbb {K}_\mathrm{I} \right) \right) } \Sigma \end{aligned}$$
(5.18)

together with

$$\begin{aligned} v = \pm \sqrt{ \Sigma - u^2} \end{aligned}$$
(5.19)

where \(\bar{x}\) is obtained by integration of the relation (5.11), namely

$$\begin{aligned} d \bar{x} = \Sigma ^{-1} dx \end{aligned}$$
(5.20)

It is remarked that such seed solutions \(\Sigma \) of Painlevé IV may be generated, in particular, via the application of established Bäcklund transformations (Bassom et al. [24], Gromak [26]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amster, P., Rogers, C. On Dirichlet two-point boundary value problems for the Ermakov–Painlevé IV equation. J. Appl. Math. Comput. 48, 71–81 (2015). https://doi.org/10.1007/s12190-014-0792-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0792-3

Keywords

Mathematics Subject Classification

Navigation