Recurrence analysis on Julia sets of semigroups of complex polynomials


We introduce a recurrence function in order to analyze the dynamics of semigroups of complex polynomials. We show that under a regularity hypothesis, the recurrence function is continuous in the complex plane. This is a new notion even for the case of a semigroup with just one generator.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Boyd, D.: An invariant measure for finitely generated rational semigroups. Complex Var. Theory Appl. 39(3), 229–254 (1999)

    Article  MATH  Google Scholar 

  2. 2.

    Chacón, G.R., Colucci, R., D’Angeli, D.: Density of bounded paths on the Julia set of a semigroup. Sarajevo J. Math. 10(1) (2014)

  3. 3.

    Colucci, R., Chacón, G.R., Leguizamon, C.J.S.: Some ideas on nonlinear musical analysis. Appl. Math. Sci. 7(25–28), 1283–1301 (2013)

    MathSciNet  Google Scholar 

  4. 4.

    Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D.: Recurrence plot of dynamical systems. Europhys. Lett. 4, 973 (1987)

    Article  Google Scholar 

  5. 5.

    Facchini, A., Mocenni, C., Maewan, N., Vicino, A., Tiezzi, E.: Nonlinear time series analysis of dissolved oxygen in the Orbetello Lagoon (Italy). Ecol. Model. 203(3–4), 339–348 (2007)

    Article  Google Scholar 

  6. 6.

    Hinkkanen, A., Martin, G.J.: The dynamics of semigroups of rational functions. I. Proc. Lond. Math. Soc. 73(2), 358–384 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Hinkkanen, A., Martin, G.J.: Some properties of semigroups of rational functions. In: XVIth Rolf Nevanlinna Colloquium, Joensuu, 1995, pp. 53–58. de Gruyter, Berlin (1996)

    Google Scholar 

  8. 8.

    Hinkkanen, A., Martin, G.J.: Julia sets of rational semigroups. Math. Z. 222(2), 161–169 (1996)

    Article  MathSciNet  Google Scholar 

  9. 9.

    Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric mathcing under noise: combinatorial bounds and algorithms. Algorithmica 38, 59–90 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Nekrashevych, V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  11. 11.

    Nekrashevych, V.: Symbolic dynamics and self-similar groups. In: Holomorphic Dynamics and Renormalization, vol. 53, pp. 25–73, Amer. Math. Soc., Providence (2008). Fields Inst. Commun.

    Google Scholar 

  12. 12.

    Perli, R., Sandri, M.: La ricerca di dinamiche caotiche nelle serie storiche economiche: una rassegna. Note Economiche del Moten dei Paschi di Siena, Anno XXIV (2) (1994)

  13. 13.

    Sumi, H.: Random complex dynamics and semigroups of holomorphic maps. Proc. Lond. Math. Soc. 102(1), 50–112 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Sun, S., Xing, X.: The research of the fractal nature between costs and efficacy in the brain vascular disease. J. Appl. Math. 2012, 171406 (2012). doi:10.1155/2012/171406

    MathSciNet  Google Scholar 

  15. 15.

    Wang, X., Chang, P.: Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques. Appl. Math. Comput. 175(2), 1007–1025 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Wang, X., Ge, F.: The quasi-sine Fibonacci hyperbolic dynamic system. Fractals 18(1), 45–51 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Wang, X., Jin, T.: Hyperdimensional generalized M−J sets in hypercomplex number space. Nonlinear Dyn. 73(1), 843–852 (2013)

    Article  MathSciNet  Google Scholar 

  18. 18.

    Wang, X., Luo, C.: Generalized Julia sets from a non-analytic complex mapping. Appl. Math. Comput. 181(1), 113–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Wang, X., Qijiang, S.: The generalized Mandelbrot-Julia sets from a class of complex exponential map. Appl. Math. Comput. 181(2), 816–825 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Wang, X., Song, W.: The generalized M–J sets for bicomplex numbers. Nonlinear Dyn. 72(1), 17–26 (2013)

    Article  MATH  Google Scholar 

  21. 21.

    Wang, X., Sun, Y.: The general quaternionic M-J sets on the mapping \(z \leftarrow z^{\alpha}+ c (\alpha\in\mathbb{N})\). Comput. Math. Appl. 53(11), 1718–1732 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Wang, X., Chang, P., Gu, N.: Additive perturbed generalized Mandelbrot-Julia sets. Appl. Math. Comput. 189(1), 754–765 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Wang, X., Wei, L., Xuejing, Y.: Research on Brownian movement based on generalized Mandelbrot-Julia sets form a class complex mapping system. Mod. Phys. Lett. B 21(20), 1321–1341 (2007)

    Article  MATH  Google Scholar 

  24. 24.

    Wang, X., Wang, Z., Lang, Y., Zhenfeng, Z.: Noise perturbed generalized Mandelbrot sets. J. Math. Anal. Appl. 347, 179–187 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Wang, X., Jia, R., Sun, Y.: The generalized Julia set perturbed by composing additive and multiplicative noises. Discrete Dyn. Nat. Soc. 2009, 781976 (2009)

    MathSciNet  Google Scholar 

  26. 26.

    Wang, X., Ruihong, J., Zhenfeng, Z.: The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative. Appl. Math. Comput. 210(1), 107–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Wang, X., Li, Y., Sun, Y., Song, J., Ge, F.: Julia sets of Newton’s method for a class of complex-exponential function F(z)=P(z)expQ(z). Nonlinear Dyn. 62(4), 955–966 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. 28.

    Webber, C.L., Zbilut, J.P. Jr.: Recurrence quantification analysis of nonlinear dynamical systems. In: Riley, M.A., Van Orden, G.C. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 26–94 (2005)

    Google Scholar 

  29. 29.

    Zhou, J.: The Julia set of a random iteration system. Bull. Aust. Math. Soc. 62(1), 45–50 (2000)

    Article  MATH  Google Scholar 

Download references


The authors would like to thank Mr.Arnold Ramírez for developing the code of some of the software needed for the experiments. The authors would also like to thank the anonymous referees for their useful suggestions and for pointing out several important references.

Author information



Corresponding author

Correspondence to Renato Colucci.

Additional information

This work was partially supported by the Project 5533 of the Department of Mathematics, Pontificia Universidad Javeriana.

The third author was supported by Austrian Science Fund project FWF P24028-N18.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chacón, G.R., Colucci, R. & D’Angeli, D. Recurrence analysis on Julia sets of semigroups of complex polynomials. J. Appl. Math. Comput. 46, 201–214 (2014).

Download citation


  • Time series analysis
  • Semigroups of analytic functions
  • Julia set
  • Complex dynamics

Mathematics Subject Classification (2000)

  • 37M10
  • 37F50