Empirical likelihood inferences for semiparametric instrumental variable models

  • Peixin ZhaoEmail author
  • Liugen Xue
Original Research


This paper studies the empirical likelihood inferences for a class of semiparametric instrumental variable models. We focus on the case that some covariates are endogenous variables, and some auxiliary instrumental variables are available. An instrumental variable based empirical likelihood method is proposed, and it is shown that the proposed empirical log-likelihood ratio is asymptotically chi-squared. Then, the confidence intervals for the regression coefficients are constructed. Some simulation studies are undertaken to assess the finite sample performance of the proposed empirical likelihood procedure.


Semiparametric regression Empirical likelihood Instrumental variables 

Mathematics Subject Classification (2000)

62G05 62G20 62G30 



This research was supported by the National Natural Science Foundation of China (Grant Nos. 11171012, 11101119 and 11126332), the National Social Science Foundation of China (Grant No. 11CTJ004), the Natural Science Foundation of Guangxi (Grant No. 2010GXNSFB013051) and the Philosophy and Social Sciences Foundation of Guangxi (Grant No. 11FTJ002).


  1. 1.
    Schultz, T.P.: Human capital, schooling and health. In: IUSSP, XXIII General Population Conference, Yale University (1997) Google Scholar
  2. 2.
    Card, D.: Estimating the return to schooling: progress on some persistent econometric problems. Econometrica 69, 1127–1160 (2001) CrossRefGoogle Scholar
  3. 3.
    Fan, J.Q., Li, R.Z.: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J. Am. Stat. Assoc. 99, 710–723 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Xue, L.G., Zhu, L.X.: Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika 94, 921–937 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liang, H., Li, R.: Variable selection for partially linear models with measurement errors. J. Am. Stat. Assoc. 104, 234–248 (2009) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ni, X., Zhang, H.H., Zhang, D.W.: Automatic model selection for partially linear models. J. Multivar. Anal. 100, 2100–2111 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Greenland, S.: An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 29, 722–729 (2000) CrossRefGoogle Scholar
  8. 8.
    Hernan, M.A., Robins, J.M.: Instruments for causal inference—an epidemiologists dream? Epidemiology 17, 360–372 (2006) CrossRefGoogle Scholar
  9. 9.
    Newhouse, J.P., McClellan, M.: Econometrics in outcomes research: the use of instrumental variables. Annu. Rev. Public Health 19, 17–24 (1998) CrossRefGoogle Scholar
  10. 10.
    Caner, M., Hansen, B.E.: Instrumental variable estimation of a threshold model. Econom. Theory 20, 813–843 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Das, M.: Instrumental variables estimator for nonparametric models with discrete endogenous regressors. J. Econom. 124, 335–361 (2005) CrossRefGoogle Scholar
  12. 12.
    Newey, W.K., Powell, J.L.: Nonparametric instrumental variables estimation. Econometrica 71, 1565–1578 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cai, Z., Das, M., Xiong, H., Wu, X.: Functional coefficient instrumental variables models. J. Econom. 133, 207–241 (2006) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cai, Z., Xiong, H.: Partially varying coefficient instrumental variables models. Stat. Neerl. 66, 85–110 (2012) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Florens, J.P., Johannes, J., Bellegem, S.: Instrumental regression in partially linear models. TSE Working Paper 10-167, Toulouse School of Economics (2009) Google Scholar
  16. 16.
    Yao, F., Zhang, J.S.: Efficient semiparametric instrumental variable estimation. Working Paper, Economics Department, West Virginia University (2010).
  17. 17.
    Yao, F.: Efficient semiparametric instrumental variable estimation under conditional heteroskedasticity. Working Paper, Economics Department, West Virginia University (2011).
  18. 18.
    Owen, A.B.: Empirical likelihood ratio confidence regions. Ann. Stat. 18, 90–120 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Owen, A.B.: Empirical likelihood for linear models. Ann. Stat. 19, 1725–1747 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, Y.P., Xue, L.G., Cheng, W.H.: Empirical likelihood for a partially linear model with covariate data missing at random. J. Stat. Plan. Inference 139, 4143–4153 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Card, D.: Using geographic variation in college proximity to estimate the return to schooling. In: Christofides, L., Grant, E., Swidinsky, R. (eds.) Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp, pp. 201–222. University of Toronto Press, Toronto (1995) Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2013

Authors and Affiliations

  1. 1.Department of MathematicsHechi UniversityYizhouChina
  2. 2.College of Applied SciencesBeijing University of TechnologyBeijingChina

Personalised recommendations