Skip to main content
Log in

Stability and instability regions of second-order equations with periodic point interactions on time scales

  • Applied mathematics
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper studies the stability and instability regions of second-order equations with periodic point interaction on time scales. By the Floquet theory and the inequalities among eigenvalues of second-order equations with coupled boundary conditions, our main results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  2. Demkov, N.Yu., Ostrovsky, V.N.: Zero-Range Potentials and Their Applications in Atomic Physics. Plenum, New York (1988)

    Book  Google Scholar 

  3. Magnus, W., Winkler, S.: Hill’s Equation. Interscience, New York (1966)

    MATH  Google Scholar 

  4. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic, Edinburgh (1973)

    MATH  Google Scholar 

  5. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I and Part II. Clarendon, Oxford (1962)

    Google Scholar 

  6. Wang, Y., Shi, Y.: Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl. 309, 56–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, H., Shi, Y.: Eigenvalues of second-order difference equations with coupled boundary conditions. Linear Algebra Appl. 414, 361–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agarwal, R.P., Bohner, M., Wong, P.J.Y.: Sturm-Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99, 153–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avron, J., Exner, P., Last, Y.: Periodic Schrödinger operators with large gaps and Wanner-Stark ladders. Phys. Rev. Lett. 72, 896–899 (1994)

    Article  MATH  Google Scholar 

  10. Hechtman, M.M., Stankevich, I.V.: The generalized Kronig-Penney problem. Funct. Anal. Appl. 111, 61–62 (1977)

    Google Scholar 

  11. Kurasov, P., Larson, J.: Spectral asymptotics for Schrödinger operators with periodic point interactions. J. Math. Anal. Appl. 266, 127–148 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mikhailets, V.A., Sobelev, A.V.: Common eigenvalue problem and periodic Schrödinger operators. J. Funct. Anal. 165, 150–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  14. Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B.: Dynamic Systems on Measure Chains. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  15. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Bohner, M., Lutz, D.A.: Asymptotic behavior of dynamic equations on time scales. J. Differ. Equ. Appl. 7, 21–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

This research was supported by the NNSF of China (Grant 11071143 and 11101241), the NNSF of Shandong Province (Grant ZR2009AL003, ZR2010AL016, and ZR2011AL007), the Scientific Research and Development Project of Shandong Provincial Education Department (J11LA01), and the NSF of University of Jinan (XKY0918).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Sun, S. Stability and instability regions of second-order equations with periodic point interactions on time scales. J. Appl. Math. Comput. 41, 351–365 (2013). https://doi.org/10.1007/s12190-012-0612-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0612-6

Keywords

Mathematics Subject Classification

Navigation