Skip to main content
Log in

The existence of positive solutions for the singular fractional differential equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We investigate the existence of at least three positive solutions to a singular boundary value problem of fractional differential equation with first-order derivative. Our analysis relies on the Avery-Peterson fixed point theorem in a cone. An example is given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Andrade, B.D., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62, 1143–1149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71, 4676–4688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lv, Z., Liang, J., Xiao, T.: Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 62, 1303–1311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kou, C., Zhou, H., Yan, Y.: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 74, 5975–5986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Liu, S., Jiang, W.: Positive solutions for boundary value problem of nonlinear fractional functional differential equations. Appl. Math. Comput. 217, 9278–9285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liang, S., Zhang, J.: Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem. Comput. Math. Appl. 62, 1333–1340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2391–2396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. 71, 3249–3256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakshmikantham, V., Leela, S.: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 71, 2886–2889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhaslar, T.G., Lakshmikantham, V., Leela, S.: Fractional differential equations with a Krasnoselskii-Krein type condition. Nonlinear Anal. 3, 734–737 (2009)

    Google Scholar 

  16. Lakshmikantham, V., Vatsala, A.S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828–834 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. N’Guérékata, G.M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal. 70, 1873–1876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional neutral functional differential equations. Nonlinear Anal. 59, 1095–1100 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 1–12 (2006)

    Article  Google Scholar 

  21. Salem, H.A.H.: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 224, 565–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhong, W., Lin, W.: Nonlocal and multiple-point boundary value problem for fractional differential equations. Comput. Math. Appl. 59, 1345–1351 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., Luo, X., Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jafari, H., Daftardar-Gejji, V.: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 180, 700–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Al-Refai, M., Hajji, M.A.: Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal. 74, 3531–3539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Su, X.: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 74, 2844–2852 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salem, H.A.H.: Fractional order boundary value problem with integral boundary conditions involving pettis integral. Acta Math. Sci. 31B, 661–672 (2011)

    MathSciNet  Google Scholar 

  29. Bai, Z.: Solvability for a class of fractional m-point boundary value problem at resonance. Comput. Math. Appl. 62, 1292–1302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rehman, M., Khan, R.A., Asif, N.A.: Three point boundary value problems for nonlinear fractional differential equations. Acta Math. Sci. 31B, 1337–1346 (2011)

    MathSciNet  Google Scholar 

  31. Liang, S., Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545–5550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal. 74, 6434–6441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Caballero, J., Harjani, J., Sadarangani, K.: Positive solutions for a class of singular fractional boundary value problems. Comput. Math. Appl. 62, 1325–1332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Agarwal, R.P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiang, D., Yuan, C.: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72, 710–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 3, 1–11 (2008)

    MathSciNet  Google Scholar 

  38. Staněk, S.: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 62, 1379–1388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jankowski, T.: Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions. Nonlinear Anal. 74, 3775–3785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Avery, R.I., Peterson, A.C.: Three positive fixed points of nonlinear operators on order Banach spaces. Comput. Math. Appl. 42, 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guo, Y., Ge, W.: Positive solutions for three-point boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 290, 291–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, B., Ge, W., Zhao, D.: Three positive solutions for multipoint one-dimensional p-Laplacian boundary value problems with dependence on the first order derivative. Math. Comput. Model. 45, 1170–1178 (2007)

    Article  MathSciNet  Google Scholar 

  43. Jiang, W.: The existence of positive solutions for second-order multi-point BVPs with the first derivative. J. Comput. Appl. Math. 225, 387–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for their constructive comments and suggestions which led to improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Jiang.

Additional information

This work is supported by the Natural Science Foundation of China (11171088), the Doctoral Program Foundation of Hebei University of Science and Technology (QD201020) and the Foundation of Hebei University of Science and Technology (XL201136).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Huang, X., Guo, W. et al. The existence of positive solutions for the singular fractional differential equation. J. Appl. Math. Comput. 41, 171–182 (2013). https://doi.org/10.1007/s12190-012-0603-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0603-7

Keywords

Mathematics Subject Classification

Navigation