Skip to main content
Log in

Solvable systems of linear differential equations

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The asymptotic iteration method (AIM) is an iterative technique used to find exact and approximate solutions to second-order linear differential equations. In this work, we employed AIM to solve systems of two first-order linear differential equations. The termination criteria of AIM will be re-examined and the whole theory is re-worked in order to fit this new application. As a result of our investigation, an interesting connection between the solution of linear systems and the solution of Riccati equations is established. Further, new classes of exactly solvable systems of linear differential equations with variable coefficients are obtained. The method discussed allow to construct many solvable classes through a simple procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineerings and Scientists. Chapman & Hall/CRC, London/Boca Raton (2007)

    Google Scholar 

  2. Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösumgen. II. Partielle Differentialgleichungen Erster Ordnung für gesuchtle Funktion. Akad. Verlagsgesellschaft Geest & Portig, Leipzig (1965)

    Google Scholar 

  3. Ciftci, H., Hall, R.L., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A, Math. Gen. 36, 11807–11816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ciftci, H., Hall, R.L., Saad, N.: Iterative solutions to the Dirac equation. Phys. Rev. A 72 022101 (2005)

    Article  MathSciNet  Google Scholar 

  5. Saad, N., Hall, R.L., Ciftci, H.: Criterion for polynomial solutions to a class of linear differential equation of second order. J. Phys. A, Math. Gen. 39, 13445–13454 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Saad, N., Hall, R.L., Ciftci, H.: Solutions for certain classes of Riccati differential equation. J. Phys. A, Math. Theor. 40, 10903–10914 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Qiang, W.-C., Li, X.P., Zhang, A.P.: New features of an asymptotic iteration method for the Dirac equation and their applications. Phys. Scr. 75, 29–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Champion, B., Hall, R., Saad, N.: Asymptotic iteration method for singular potentials. Int. J. Mod. Phys. A 23, 1405–1415 (2008)

    Article  MATH  Google Scholar 

  9. Durmus, A., Yasuk, F., Boztosun, I.: Exact analytical solution of the Klein-Gordon equation for the pionic atom by asymptotic iteration method. Int. J. Mod. Phys. E 15, 1243–1251 (2006)

    Article  Google Scholar 

  10. Boztosun, I., Bonatsos, D., Inci, I.: Analytical solutions of the Bohr Hamiltonian with the Morse potential. Phys. Rev. C 77, 044302 (2008)

    Article  Google Scholar 

  11. Ciftci, H.: Anharmonic oscillator energies by the asymptotic iteration method. Mod. Phys. Lett. A 23, 261–267 (2008)

    Article  Google Scholar 

  12. Jurilin, B.I.: Some particular solutions of the Riccati equation. Radiophys. Quantum Electron. 11, 1114–1115 (1968)

    Google Scholar 

  13. Haaheim, D.R., Stein, F.M.: Methods of solution of the Riccati differential equation. Math. Mag. 42, 223–250 (1969)

    Article  MathSciNet  Google Scholar 

  14. Rainville, E.D.: Necessary conditions for polynomial solutions of certain Riccati equations. Am. Math. Mon. 43, 473–476 (1936)

    Article  MathSciNet  Google Scholar 

  15. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  16. Chuan, C.X.: A theorem on the separation of a system of coupled differential equations. J. Phys. A, Math. Gen. 14, 1069–1074 (1981)

    Article  MATH  Google Scholar 

  17. Chuan, C.X.: Theory of coupled differential equations. J. Phys. A, Math. Gen. 15, 2727–2734 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, K.M., Saad, N. Solvable systems of linear differential equations. J. Appl. Math. Comput. 31, 475–494 (2009). https://doi.org/10.1007/s12190-008-0225-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-008-0225-2

Keywords

Mathematics Subject Classification (2000)

Navigation