Skip to main content
Log in

The existence of anti-periodic solutions for high order Duffing equation

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, the existence of anti-periodic solutions for high order Duffing equations is studied by using degree theory and some known results are improved to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftabizadeh, A.R., Aizicovici, S., Pavel, N.H.: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171, 301–320 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cong, F.Z., Hunang, Q.D., Shi, S.Y.: Existence and uniqueness of periodic solutions for (2n+1)th order differential equations. J. Math. Anal. Appl. 241, 1–9 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  4. Hardy, G.H., Littlewood, J.E., Pòlya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  5. Liu, W.B., Li, Y.: The existence of periodic solutions for high order Duffing equations. Acta. Math. Sin. 46, 49–56 (2003)

    Google Scholar 

  6. Li, W.G.: Periodic solutions for 2kth order ordinary differential equation with resonance. J. Math. Anal. Appl. 259, 157–167 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mawhin, J.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differ. Equ. 52, 264–287 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nakao, M.: Existence of an anti-periodic solution for the quasi-linear wave with viscosity. J. Math. Anal. 204, 754–764 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ortega, R.: Counting periodic solutions of the forced pendulum equation. Nonlinear Anal. 42, 1055–1062 (2000)

    Article  MathSciNet  Google Scholar 

  10. Pinsky, M.A., Zevin, A.A.: Oscillations of a pendulum with a periodically varying length and a model of swing. J. Non-Linear Mech. 34, 105–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tian, Y., Zhang, G.S., Ge, W.G.: Periodic solutions for a quasilinear non-autonomous second-order system. J. Appl. Math. Comput. 22, 263–271 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Wang, Y.Y., Zhang, G.S., Ge, W.G.: Multi-point boundary value problems for one-dimensional p-Laplacian at resonance. J. Appl. Math. Comput. 22, 361–372 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiyong Chen.

Additional information

Supported by Science Foundation of China University of Mining and Technology (No. A200403, No. 2005A041 and No. 2006A042).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Liu, W. & Zhang, J. The existence of anti-periodic solutions for high order Duffing equation. J. Appl. Math. Comput. 27, 271–280 (2008). https://doi.org/10.1007/s12190-008-0056-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-008-0056-1

Keywords

Mathematics Subject Classification (2000)

Navigation