Skip to main content
Log in

Abstract

We study finite dimensional almost- and quasi-effective prolongations of nilpotent \({\mathbb {Z}}\)-graded Lie algebras, especially focusing on those having a decomposable reductive structural subalgebra. Our assumptions generalize effectiveness and algebraicity and are appropriate to obtain Levi–Malčev and Levi–Chevalley decompositions and precisions on the heigth and other properties of the prolongations in a very natural way. In a last section we consider the semisimple case and discuss some examples in which the structural algebras are central extensions of orthogonal Lie algebras and their degree \((-\,1)\) components arise from spin representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F., Mahmud, Z., Mimura, M.: Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics. University of Chicago Press (1996)

  2. Alekseevsky, D.V., Spiro, A.: Prolongations of Tanaka structures and regular CR structures, Selected topics in Cauchy–Riemann geometry. Quad. Mat. 9, 1–37 (2001)

    MATH  Google Scholar 

  3. Altomani, A., Medori, C., Nacinovich, M.: The CR structure of minimal orbits in complex flag manifolds. J. Lie Theory 16(3), 483–530 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Altomani, A., Medori, C., Nacinovich, M.: On homogeneous and symmetric CR manifolds. Boll. U.M.I. 9, 221–265 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Altomani, A., Medori, C., Nacinovich, M.: Orbits of real forms in complex flag manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(1), 69–109 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Altomani, A., Medori, C., Nacinovich, M.: Reductive compact homogeneous CR manifolds. Transform. Groups 18(2), 289–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Altomani, A., Santi, A.: Tanaka structures modeled on extended Poincaré algebras. Indiana Univ. Math. J. 1, 91–177 (2014)

    Article  MATH  Google Scholar 

  8. Araki, S.: On root systems and an infinitesimal classification of irreducible symmetric spaces. J. Math. Osaka City Univ. 13, 1–34 (1962)

    MathSciNet  MATH  Google Scholar 

  9. Barut, A.O., Bracken, A.J.: The remarkable algebra \({\mathfrak{so}}^*(2 n)\), its representations, its Clifford algebra and potential applications. J. Phys. A 23(641), 30 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 1–3, Elements of Mathematics (Berlin). Springer, Berlin (1989). Translated from the French, Reprint of the 1975 edition

  11. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 7–9, Elements of Mathematics (Berlin). Springer, Berlin (2005). Translated from the 1975 and 1982 French originals by Andrew Pressley

  12. Cartan, E.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27, 109–192 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciatti, P., Cowling, M.G.: The Levi decomposition of a graded Lie algebra. Riv. Math. Univ. Parma (N.S.) 9(2), 373–378 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.): Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2. AMS, Providence (1999)

    Google Scholar 

  15. Furutani, K., Molina, G.M., Markina, I., Morimoto, T., Vasil’ev, A.: Lie algebras attached to Clifford modules and simple graded Lie algebras. J. Lie Theory 28(3), 843–864 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Golubitsky, M., Rothschild, B.: Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39(2), 371–393 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillemin, V.W., Sternberg, S.: An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  19. Kobayashi, S.: Transformations Groups in Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiet, 70. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  20. Lotta, A., Nacinovich, M.: On a class of symmetric CR manifolds. Adv. Math. 191(1), 114–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lotta, A., Nacinovich, M.: CR-admissible \(Z_2\)-gradations and CR-symmetries. Ann. Mat. Pura Appl. (4) 187(2), 221–236 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Marini, S., Medori, C., Nacinovich, M.: \({\mathfrak{L}}\)-Prolongations of graded Lie algebras. Geom. Dedic. (2020). https://doi.org/10.1007/s10711-020-00510-0

    Google Scholar 

  23. Marini, S., Medori, C., Nacinovich, M., Spiro, A.: On transitive contact and \(CR\) algebras. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 20(2), 771–795 (2020). https://doi.org/10.2422/2036-2145.201710_012

    Google Scholar 

  24. Marini, S., Nacinovich, M.: Orbits of Real Forms, Matsuki Duality and \(CR\)-Cohomology. Complex and Symplectic Geometry, Springer INdAM Ser., vol. 21, pp. 149–162. Springer, Cham (2017)

    MATH  Google Scholar 

  25. Marini, S., Nacinovich, M.: Mostow’s fibration for canonical embeddings of compact homogeneous CR manifolds. Rend. Semin. Mat. Univ. Padova 140, 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Medori, C., Nacinovich, M.: Levi–Tanaka algebras and homogeneous CR manifolds. Compos. Math. 109(2), 195–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Medori, C., Nacinovich, M.: Classification of semisimple Levi–Tanaka algebras. Ann. Mat. Pura Appl. (4) 174, 285–349 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Medori, C., Nacinovich, M.: The Levi–Malcev theorem for graded CR Lie algebras. In: Recent Advances in Lie Theory (Vigo, 2000), Res. Exp. Math., vol. 25, pp. 341–346. Heldermann, Lemgo (2002)

  29. Moody, R.V.: A new class of Lie algebras. J. Algebra 10(2), 211–230 (1968)

    Article  MathSciNet  Google Scholar 

  30. Mostow, G.D.: Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ottazzi, A., Warhurst, B.: Algebraic prolongation and rigidity of Carnot groups. Monatshefte Math. 162(2), 179–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs. New Series, vol. 7. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  33. Sternberg, S.: Lectures on Differential Geometry. Chelsea Publ. Co., New York (1983). First edition: Prentice Hall, Inc. Englewood Cliffs, N.J., 1964

  34. Tanaka, N.: On generalized graded Lie algebras and geometric structures. I. J. Math. Soc. Jpn. 19, 215–254 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tanaka, N.: On differential systems, graded Lie algebras and pseudogroups. J. Math. Kyoto Univ. 10, 1–82 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Warhurst, B.: Tanaka prolongation of free Lie algebras. Geom. Dedic. 130(1), 59–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wilson, R.L.: Irreducible Lie algebras of infinite type. Proc. Am. Math. Soc. 29, 243–249 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Medori.

Additional information

Communicated by Vicente Cortés.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, S., Medori, C. & Nacinovich, M. On some classes of \({\mathbb {Z}}\)-graded Lie algebras. Abh. Math. Semin. Univ. Hambg. 90, 45–71 (2020). https://doi.org/10.1007/s12188-020-00217-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-020-00217-9

Keywords

2000 Mathematics Subject Classification

Navigation