Why there is no an existence theorem for a convex polytope with prescribed directions and perimeters of the faces?

  • Victor Alexandrov


We choose some special unit vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) in \({\mathbb {R}}^3\) and denote by \({\mathscr {L}}\subset {\mathbb {R}}^5\) the set of all points \((L_1,\ldots ,L_5)\in {\mathbb {R}}^5\) with the following property: there exists a compact convex polytope \(P\subset {\mathbb {R}}^3\) such that the vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) (and no other vector) are unit outward normals to the faces of P and the perimeter of the face with the outward normal \({\mathbf {n}}_k\) is equal to \(L_k\) for all \(k=1,\ldots ,5\). Our main result reads that \({\mathscr {L}}\) is not a locally-analytic set, i.e., we prove that, for some point \((L_1,\ldots ,L_5)\in {\mathscr {L}}\), it is not possible to find a neighborhood \(U\subset {\mathbb {R}}^5\) and an analytic set \(A\subset {\mathbb {R}}^5\) such that \({\mathscr {L}}\cap U=A\cap U\). We interpret this result as an obstacle for finding an existence theorem for a compact convex polytope with prescribed directions and perimeters of the faces.


Euclidean space Convex polyhedron Perimeter of a face Analytic set 

Mathematics Subject Classification

52B10 51M20 


  1. 1.
    Alexandrov, A.D.: An elementary proof of the Minkowski and some other theorems on convex polyhedra. Izv. Akad. Nauk SSSR, Ser. Mat. (4), 597–606 (1937) (in Russian) Google Scholar
  2. 2.
    Alexandrov, A.D.: Selected Works. Part 1: Selected Scientific Papers. Gordon and Breach Publishers, Amsterdam (1996)zbMATHGoogle Scholar
  3. 3.
    Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)zbMATHGoogle Scholar
  4. 4.
    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Minkowski, H.: Allgemeine Lehrsätze über die convexen Polyeder. Gött. Nachr. 198–219 (1897)Google Scholar
  6. 6.
    Minkowski, H.: Gesammelte Abhandlungen von Hermann Minkowski. Band I. Teubner, Leipzig (1911)zbMATHGoogle Scholar
  7. 7.
    Panina, G.: A.D. Alexandrov’s uniqueness theorem for convex polytopes and its refinements. Beitr. Algebra Geom. 49(1), 59–70 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Sullivan, D.: Combinatorial invariants of analytic spaces. In: Proceedings of Liverpool Singularities—Symposium, I. Department of Pure Mathematics, University of Liverpool 1969–1970, 165–168 (1971)Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Department of PhysicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations