Skip to main content
Log in

Abstract

We give a systematic way to construct almost conjugate pairs of finite subgroups of \(\mathrm {Spin}(2n+1)\) and \({{\mathrm{Pin}}}(n)\) for \(n\in {\mathbb {N}}\) sufficiently large. As a geometric application, we give an infinite family of pairs \(M_1^{d_n}\) and \(M_2^{d_n}\) of nearly Kähler manifolds that are isospectral for the Dirac and Laplace operator with increasing dimensions \(d_n>6\). We provide additionally a computation of the volume of (locally) homogeneous six dimensional nearly Kähler manifolds and investigate the existence of Sunada pairs in this dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. See Tables 2 and 3 for information on normal subgroups of ADE groups.

  2. We refer to [7] for an exhaustive list of homogeneous nearly Kähler manifolds.

References

  1. Ammann, B., Bär, C.: The Dirac operator on nilmanifolds and collapsing circle bundles. Ann. Glob. Anal. Geom. 16, 221–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adem, A., Milgram, R.: Cohomology of Finite Groups, vol. 309. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Blasius, D.: On multiplicities for \(\text{ SL }(n)\). Isr. J. Math. 88(1–3), 237–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butruille, J.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27, 201–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butruille, J.: Homogeneous nearly Kähler manifolds. In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, pp. 399–423. EMS, Zürich (2010)

  6. Cabrera, F., Dávila, J.C.G.: Homogeneous nearly Kähler manifolds. arXiv:1006.2636 [math.DG]

  7. Cabrera, F., Dávila, J.C.G.: Homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 42(2), 147–170 (2012)

    Article  MATH  Google Scholar 

  8. Charbonneau, B., Harland, D.: Deformations of nearly Kähler instantons. Commun. Math. Phys. 348, 959–990 (2016)

    Article  MATH  Google Scholar 

  9. Conway, J., Sloane, N.J.: Four dimensional lattices with the same theta series. Int. Math. Res. Not. 4, 93–96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cortés, V., Vásquez, J.J.: Locally homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 48, 269–294 (2015)

    Article  MATH  Google Scholar 

  11. Figueroa-O’Farrill, J., de Medeiros, P.: Half BPS M2-brane orbifolds. Adv. Theor. Math. Phys. 16(5), 1349–1409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerard, E.T.F.: A polarization identity for multilinear maps. Indag. Math. 25, 468–474 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilkey, P.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem. Mathematics Lecture Series, vol. 11. Publish or Perish, Wilmington (1984)

    MATH  Google Scholar 

  14. Gordon, C.: Sunada’s Isospectrality Technique: Two Decades Later. Spectral Analysis in Geometry and Number Theory, pp. 45–58. Amer. Math. Soc., Providence (2009)

    Book  MATH  Google Scholar 

  15. Gray, A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)

    Article  MATH  Google Scholar 

  16. Gray, A.: Weak holonomy groups. Math. Z. 123, 290–300 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Larsen, M.: On the conjugacy of element-conjugate homomorphisms. Isr. J. Math. 88(1–3), 253–277 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Larsen, M.: On the conjugacy of element-conjugate homomorphisms II. Q. J. Math. Oxf. Ser. (2) 47(185), 73–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ledger, A., Obata, M.: Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macdonald, I.G.: The volume of a compact Lie group. Invent. Math. 56, 93–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Commun. Math. Phys. 294, 251–272 (2010)

    Article  MATH  Google Scholar 

  22. Nagy, P.A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6, 481–504 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pesce, H.: Une réciproque générique du théoréme Sunada. Compos. Math. 109(3), 357–365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossetti, J., Schüth, D., Weinlandt, M.: Isospectral orbifolds with different maximal isotropy orders. Ann. Glob. Anal. Geom. 34, 351–366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer, New York (2001)

    Book  MATH  Google Scholar 

  26. Schacher, M.: Double covers of the symmetric groups as Galois groups over number fields. J. Algebra 116(1), 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shankhar, K.: Isometry groups of homogeneous spaces with positive sectional curvature. Differ. Geom. Appl. 14, 57–78 (2001)

    Article  MathSciNet  Google Scholar 

  28. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. (2) 121(1), 169–185 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tojo, K.: Kähler C-spaces and k-symmetric spaces. Osaka J. Math. 34, 803–820 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres and Moduli. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  31. Wilson, R.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, Berlin (2000)

    Google Scholar 

  32. Wolf, J.A.: Isospectrality for Spherical Space Forms, Results in Mathematics. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank M. Larsen and T. Finis for discussions concerning results in [17, 18], as well as A. Adem for pointing out a reference for the group cohomological facts used in the proof of Theorem 2.10. He also wants to thank N. Ginoux for several corrections in the previous versions of this paper and G. Weingart for providing help with the algorithmic computations that yield Example 2.11 and his hospitality during the author’s stay in Cuernavaca.

This work was supported by the Max-Planck-institut für Mathematik in den Naturwissenchaften.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Vásquez.

Additional information

Communicated by Vicente Cortés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez, J.J. Isospectral nearly Kähler manifolds. Abh. Math. Semin. Univ. Hambg. 88, 23–50 (2018). https://doi.org/10.1007/s12188-017-0185-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-017-0185-2

Keywords

Mathematics Subject Classification

Navigation