The Hitchin fibration under degenerations to noded Riemann surfaces

  • Jan SwobodaEmail author


In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces \(\Sigma _R\) converging for \(R\searrow 0\) to a surface \(\Sigma _0\) with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin fibration \(\mathcal M_d\rightarrow \Sigma _R\) gives rise to a graph-continuous Fredholm family, the index of it being stable when passing to the limit. We also report on similarities and differences between properties of the Hitchin fibration in this degeneration and in the limit of large Higgs fields as studied in Mazzeo et al. (Duke Math. J. 165(12):2227–2271, 2016).


Hitchin fibration Self-duality equations Noded Riemann surface 

Mathematics Subject Classification

53C07 32G13 30F30 



The author would like to thank Hartmut Weiß for a number of valuable comments and useful discussions.


  1. 1.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Phil. Soc. 77, 43–69 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Biquard, O., Boalch, P.: Wild non-abelian Hodge theory on curves. Compos. Math. 140(1), 179–204 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cappell, S., Lee, R., Miller, E.: Self-adjoint elliptic operators and manifold decompositions. Part I: Low eigenmodes and stretching. Comm. Pure Appl. Math. 49, 825–866 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cordes, H.O., Labrousse, J.P.: The invariance of the index in the metric space of closed operators. J. Math. Mech. 12, 693–720 (1963)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Freed, D.: Special Kähler manifolds. Comm. Math. Phys. 203, 31–52 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gaiotto, D., Moore, G., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Comm. Math. Phys. 299(1), 163–224 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gaiotto, D., Moore, G., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hitchin, N.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55(1), 59–126 (1987)Google Scholar
  9. 9.
    Le Rotier, J.: Fibrés de Higgs et systèmes locaux, Séminaire Bourbaki, Vol. 1990/91. Astérisque No. 201-203 (1991), 737, 221–268 (1992)Google Scholar
  10. 10.
    Mazzeo, R., Piazza, P.: Dirac operators, heat kernels and microlocal analysis. Part II Anal. Surg. Rendicondi di Matematica e delle sue applicazioni 18, 221–288 (1998)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mazzeo, R., Swoboda, J.: Asymptotics of the Weil-Petersson metric, Int. Math. Res. Notices Adv. Publ. (2016). doi: 10.1093/imrn/rnw056
  12. 12.
    Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: Ends of the moduli space of Higgs bundles, Duke Math. J. 165(12), 2227–2271 (2016). doi: 10.1215/00127094-3476914
  13. 13.
    Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: Limiting configurations for solutions of Hitchin’s equation, Séminaire de Théorie spectrale et géométrie (Grenoble) 31 (2012–2014), 91–116Google Scholar
  14. 14.
    Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: On the semiflat conjecture for Higgs bundles, article in preparation (2016)Google Scholar
  15. 15.
    Melrose, R.: The Atiyah-Patodi-Singer index theorem. Res. Notes Math. vol. 4. A K Peters Ltd., Wellesley, MA (1993)Google Scholar
  16. 16.
    Nicolaescu, L.: On the Cappell-Lee-Miller gluing theorem. Pacific J. Math. 206(1), 159–185 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Seeley, R., Singer, I.M.: Extending \(\bar{\partial }\) to singular Riemann surfaces. J. Geom. Phys. 5(1), 121–136 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Swoboda, J.: Moduli spaces of Higgs bundles on degenerating Riemann surfaces (submitted). arXiv:1507.04382 [math.DG]

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mathematisches Institut der Ruprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations