Advertisement

Siegel series for skew Hermitian forms over quaternion algebras

  • Shunsuke Yamana
Article

Abstract

We prove a functional equation of Siegel series associated to nondegenerate semi-integral skew Hermitian forms over quaternion algebras over nonarchimedean local fields of characteristic not 2.

Keywords

Siegel series Prehomogeneous vector spaces Eisenstein series Degenerate principal series Quaternion algebras 

Mathematics Subject Classification

11E45 11S90 

Notes

Acknowledgments

The idea of the proof of Lemma 5.5 was suggested by Wee Teck Gan. We thank him for sharing his insight with us. The author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 26800017. This paper was written during the author’s stay at University of Rijeka. The author would like to thank the staffs of University of Rijeka, especially Neven Grbac, for an excellent working environment. We are grateful to the anonymous referee for a very careful reading and detailed comments, which helped improve the exposition of the earlier version.

References

  1. 1.
    Böcherer, S., Kohnen, W.: On the functional equation of singular series. Abh. Math. Sem. Univ. Hamburg 70, 281–286 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gan, W.T., Ichino, A.: Formal degree and theta correspondence. Invent. Math. 195(3), 509–672 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gan, W.T., Yu, J.-K.: Group schemes and local densities. Duke Math. J. 105(3), 497–524 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Harris, M., Kudla, S., Sweet Jr., W.J.: Theta dichotomy for unitary groups. J. Am. Math. Soc. 9, 941–1004 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hirai, Y.: On Eisenstein series on quaternion unitary groups of degree \(2\). J. Math. Soc. Japan 51(1), 93–128 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hironaka, Y., Sato, F.: The Siegel series and spherical functions on \({\rm O}(2n)/({\rm O}(n) \times {\rm O}(n))\). In: Automorphic Forms and Zeta Functions, pp. 150–169. World Sci. Publ, Hackensack (2006)Google Scholar
  7. 7.
    Igusa, J.: On functional equations of complex powers. Invent. Math. 85, 1–29 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ikeda, T.: On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2n\). Ann. Math. 154, 641–681 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ikeda, T.: On the lifting of Hermitian modular forms. Compos. Math. 144(5), 1107–1154 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ikeda, T.: On the functional equation of the Siegel series (preprint) Google Scholar
  11. 11.
    Kahn, B.: Sommes de Gauss attachées aux caractères quadratiques: une conjecture de Pierre Conner. Comment. Math. Helv. 62, 532–541 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karel, M.: Functional equations of Whittaker functions on \(p\)-adic groups. Am. J. Math. 101, 1303–1325 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Katsurada, H.: An explicit formula for Siegel series. Am. J. Math. 121, 415–452 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kottwitz, R.: Sign changes in harmonic analysis on reductive groups. Trans. Am. Math. Soc. 278, 289–297 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kudla, S., Sweet Jr., W.J.: Degenerate principal series representations for \(U(n, n)\). Israel J. Math. 98, 253–306 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lapid, E., Rallis, S.: On the local factors of representations of classical groups. In: Automorphic Representations. \(L\)-Functions and Applications: Progress and Prospects, pp. 309–359. de Gruyter, Berlin (2005)Google Scholar
  17. 17.
    Piatetski-Shapiro, I., Rallis, S.: Rankin triple \(L\)-functions. Compos. Math. 64, 31–115 (1987)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Shimura, G.: Euler products and Eisenstein series. In: CBMS Regional Conference Series in Mathematics, vol. 93. Amer. Math. Soc., New York (1997)Google Scholar
  19. 19.
    Shimura, G.: Some exact formulas on quaternion unitary groups. J. Reine Angew. Math. 509, 67–102 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sugano, T.: On holomorphic cusp forms on quaternion unitary groups of degree \(2\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31(3), 521–568 (1985)Google Scholar
  21. 21.
    Sweet Jr., W.J.: A computation of the gamma matrix of a family of \(p\)-adic zeta integrals. J. Number Theory 55, 222–260 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sweet, W.J. Jr.: Functional equations of \(p\)-adic zeta integrals and representations of the metaplectic group (preprint) Google Scholar
  23. 23.
    Weil, A.: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1–87 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yamana, S.: On the lifting of elliptic cusp forms to cusp forms on quaternionic unitary groups. J. Number Theory 130(11), 2480–2527 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yamana, S.: Degenerate principal series representations for quaternionic unitary groups. Israel J. Math. 185, 77–124 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yamana, S.: On the Siegel–Weil formula for quaternionic unitary groups. Am. J. Math. 135(5), 1383–1432 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yamana, S.: \(L\)-functions and theta correspondence for classical groups. Invent. Math. 196(3), 651–732 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan
  2. 2.Hakubi CenterKyotoJapan

Personalised recommendations