Skip to main content
Log in

Abstract

We show that certain p-adic Eisenstein series for quaternionic modular groups of degree 2 become “real” modular forms of level p in almost all cases. To prove this, we introduce a U(p) type operator. We also show that there exists a p-adic Eisenstein series of the above type that has transcendental coefficients. Former examples of p-adic Eisenstein series for Siegel and Hermitian modular groups are both rational (i.e., algebraic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, W.W.: Transcendental numbers in the p-adic domain. Am. J. Math. 88, 279–308 (1966)

    Article  MATH  Google Scholar 

  2. Böcherer, S.: On the Hecke operator U(p). J. Math. Kyoto Univ. 45, 807–829 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Gouvêa, F.Q.: p-Adic Numbers. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  4. Hida, H.: Elementary Theory of L-Functions and Eisenstein Series. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  5. Kikuta, T., Nagaoka, S.: On a correspondence between p-adic Siegel–Eisenstein series and genus theta series. Acta Arith. 134, 111–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Krieg, A.: Modular Forms on Half-Space on Quaternions. Lecture Notes in Math., vol. 1143. Springer, Berlin (1985)

    Google Scholar 

  7. Krieg, A.: Hecke-operatoren und Dirichlet-Reihen für Modulformen auf dem quaternionen-Halbraum. Habilitationsschrift, Westfälischen Wilhelms-Universität Münster (1989)

  8. Krieg, A.: The Maass space and Hecke operators. Math. Z. 204, 527–550 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leopoldt, H.-W.: Zur Approximation des p-adischen Logarithmus. Abh. Math. Semin. Univ. Hamb. 25, 77–81 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mahler, K.: Über Transzendente P-adische Zahlen. Compos. Math. 2, 259–275 (1935)

    MathSciNet  Google Scholar 

  11. Nagaoka, S.: On p-adic Hermitian Eisenstein series. Proc. Am. Math. Soc. 134, 2533–2540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Serre, J.-P.: Formes modulaires et fonctions zêta p-adiques. In: Modular Functions of One Variable III. Lecture Notes in Math., vol. 350, pp. 191–268. Springer, Berlin (1973)

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor A. Krieg for helpful comments on the proof of the modularity of FU(p). We also thank Professor M. Amou for pointing out the transcendency of log p (2p−1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoyu Nagaoka.

Additional information

Communicated by U. Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuta, T., Nagaoka, S. On p-adic quaternionic Eisenstein series. Abh. Math. Semin. Univ. Hambg. 83, 147–157 (2013). https://doi.org/10.1007/s12188-013-0084-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-013-0084-0

Keywords

Mathematics Subject Classification (2010)

Navigation