Skip to main content
Log in

Superization of homogeneous spin manifolds and geometry of homogeneous supermanifolds

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

Let M 0=G 0/H be a (pseudo)-Riemannian homogeneous spin manifold, with reductive decomposition \(\mathfrak {g}_{0}=\mathfrak {h}+\mathfrak {m}\) and let S(M 0) be the spin bundle defined by the spin representation \(\tilde{ \operatorname {Ad}}:H\rightarrow \mathrm {GL}_{\mathbb {R}}(S)\) of the stabilizer H. This article studies the superizations of M 0, i.e. its extensions to a homogeneous supermanifold M=G/H whose sheaf of superfunctions is isomorphic to the sheaf of sections of Λ(S *(M 0)). Here G is the Lie supergroup associated with a certain extension of the Lie algebra of symmetry \(\mathfrak {g}_{0}\) to an algebra of supersymmetry \(\mathfrak {g}=\mathfrak {g}_{\overline {0}}+\mathfrak {g}_{\overline {1}}=\mathfrak {g}_{0}+S\) via the Kostant-Koszul construction. Each algebra of supersymmetry naturally determines a flat connection \(\nabla^{\mathcal {S}}\) in the spin bundle S(M 0). Killing vectors together with generalized Killing spinors (i.e. \(\nabla^{\mathcal {S}}\) -parallel spinors) are interpreted as the values of appropriate geometric symmetries of M, namely even and odd Killing fields. An explicit formula for the Killing representation of the algebra of supersymmetry is obtained, generalizing some results of Koszul. The generalized spin connection \(\nabla^{\mathcal {S}}\) defines a superconnection on M, via the super-version of a theorem of Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Córtes, V.: Classification of N-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of Spin (p,q). Commun. Math. Phys. 183, 477–510 (1997)

    Article  MATH  Google Scholar 

  2. Alekseevsky, D.V., Córtes, V., Devchand, C., Proeyen, A.: Polyvector super-Poincaré algebras. Commun. Math. Phys. 253, 385–422 (2005)

    Article  MATH  Google Scholar 

  3. Alekseevsky, D.V., Córtes, V., Devchand, C., Semmelmann, U.: Killing spinors are Killing vector fields in Riemannian supergeometry. J. Geom. Phys. 26, 37–50 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. (Basel) 59, 65–79 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Bartocci, C., Bruzzo, U., Hernández-Ruipérez, D.: The Geometry of Supermanifolds. MIA, vol. 71. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  6. Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329–338 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baguis, P., Stavracou, T.: Normal Lie subsupergroups and non-Abelian supercircles. Int. J. Math. Sci. 30, 581–591 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyer, C.P., Sánchez Valenzuela, O.A.: Lie supergroup actions on supermanifolds. Trans. Am. Math. Soc. 323, 151–175 (1991)

    Article  MATH  Google Scholar 

  9. Cariñena, J.F., Figueroa, H.: Hamiltonian versus Lagrangian formulation of supermechanics. J. Phys. A, Math. Gen. 30, 2705–2724 (1997)

    Article  MATH  Google Scholar 

  10. Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions. Phys. Lett. B 76, 409–412 (1978)

    Article  Google Scholar 

  11. Córtes, V.: A new construction of homogeneous quaternionic manifolds and related geometric structures. Mem. Am. Math. Soc. 147(700) (2000), pp. viii+63

    Google Scholar 

  12. Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). In: Quantum Fields and Strings: A Course for Mathematicians, vol. I, pp. 41–97. AMS, Providence (1999)

    Google Scholar 

  13. Duflo, M., Petracci, E.: Symmetric pairs and Gorelik elements. J. Algebra 313, 125–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Figueroa-O’Farrill, J.: Lorentzian symmetric spaces in supergravity. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys., pp. 419–454. Eur. Math. Soc., Zurich (2008)

    Chapter  Google Scholar 

  15. Figueroa-O’Farrill, J.: On the supersymmetries of anti-de Sitter vacua. Class. Quantum Gravity 16, 2043–2055 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Figueroa-O’Farrill, J.: The homogeneity conjecture for supergravity backgrounds. arXiv:0812.1258 (2008)

  17. Figueroa-O’Farrill, J., Papadopoulos, G.: Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory. J. High Energy Phys. 8, 036 (2001)

    Article  MathSciNet  Google Scholar 

  18. Figueroa-O’Farrill, J.: A geometric construction of the exceptional Lie algebras F 4 and E 8. Commun. Math. Phys. 283, 663–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fioresi, R., Lledó, M.A., Varadarajan, V.S.: The Minkowski and conformal superspaces. J. Math. Phys. 48(11), 27 (2007)

    Article  Google Scholar 

  20. Freund, P.: Introduction to Supersymmetry. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  21. Friedrich, T.: Dirac Operators in Riemannian Geometry. Grad. Stud. Math., vol. 25. AMS, Providence (2000)

    MATH  Google Scholar 

  22. Galaev, A.S.: Holonomy of supermanifolds. Abh. Math. Semin. Univ. Hambg. 79, 47–78 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goertsches, O.: Riemannian supergeometry. Math. Z. 260, 557–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hatsuda, M., Kamimura, K., Sakaguchi, M.: Super pp-wave algebra from super AdS×S algebras in eleven dimensions. Nucl. Phys. B 637, 168–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Klinker, F.: Supersymmetric Killing structures. Commun. Math. Phys. 255, 419–467 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Klinker, F.: SUSY structures on deformed supermanifolds. Differ. Geom. Appl. 26, 566–582 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Interscience, New York (1969)

    Google Scholar 

  28. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II. Interscience, New York (1969)

    MATH  Google Scholar 

  29. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  30. Kosmann, Y.: Derivees de Lie des spineurs. Ann. Mat. Pura Appl. 91, 317–395 (1972)

    MATH  MathSciNet  Google Scholar 

  31. Kostant, B.: Graded manifolds, graded Lie theory and prequantization. In: Lect. Notes in Math., vol. 570, pp. 177–306. Springer, Berlin (1977)

    Google Scholar 

  32. Koszul, J.L.: Graded manifolds and graded Lie algebras. In: Proceedings of the International Meeting on Geometry and Physics (Bologna), Pitagora, pp. 71–84 (1982)

  33. Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton Math. Series, vol. 38. Princeton Univ. Press, Princeton (1989)

    MATH  Google Scholar 

  34. Leites, D.A.: Introduction to the theory of supermanifolds. Russ. Math. Surv. 35, 1–64 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  35. Monterde, J., Sánchez-Valenzuela, O.A.: The exterior derivative as a Killing vector field. Isr. J. Math. 93, 157–170 (1996)

    Article  MATH  Google Scholar 

  36. Petracci, E.: Universal representations of Lie algebras by coderivations. Bull. Sci. Math. 127, 439–465 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Radford, D.: Divided power structures on Hopf algebras and embedding Lie algebras into special-derivations algebras. J. Algebra 98, 143–170 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Scheunert, M.: The Theory of Lie Superalgebras. Lect. Notes in Math., vol. 716. Springer, Berlin (1979)

    MATH  Google Scholar 

  39. Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)

    Google Scholar 

  40. Townsend, P.K.: Killing spinors, supersymmetries and rotating intersecting branes. In: Novelties in String Theory, pp. 177–182. World Scientific, Singapore (1999)

    Google Scholar 

  41. Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Cour. Lect. Notes in Math., vol. 11. AMS, Providence (2004)

    MATH  Google Scholar 

  42. Wess, J., Zumino, B.: Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39–50 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Santi.

Additional information

Communicated by V. Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santi, A. Superization of homogeneous spin manifolds and geometry of homogeneous supermanifolds. Abh. Math. Semin. Univ. Hambg. 80, 87–144 (2010). https://doi.org/10.1007/s12188-009-0031-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-009-0031-2

Keywords

Mathematics Subject Classification (2000)

Navigation