Skip to main content
Log in

An affine invariant characterization of flat gravity curves

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

The study of affine differential geometry is partially motivated by the fact that the direction of the affine normal coincides with the tangent direction of the gravity curve at the base point. A way to prove this is to compute the Taylor expansion of the hypersurface up to third order derivatives. By computing fourth and fifth order coefficients we characterize the second order behavior of the gravity curve at its base point in terms of affine invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binder, T., Simon, U. (eds.): Progress in Affine Differential Geometry—Problem List and Continued Bibliography. Geometry and Topology of Submanifolds, vol. X. World Scientific, Singapore (2000). pp. 1–17

    Google Scholar 

  2. Blaschke, W.: Vorlesungen über Differentialgeometrie, vol. II. Springer, Berlin (1923)

    MATH  Google Scholar 

  3. Dillen, F., Martínez, A., Milán, F., Garcia Santos, F., Vrancken, L.: On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces. Result. Math. 20, 622–642 (1991)

    MATH  Google Scholar 

  4. Leichtweiß, K.: Über eine geometrische Deutung des Affinnormalenvektors einseitig gekrümmter Hyperflächen. Arch. Math. 53, 613–621 (1989)

    Article  MATH  Google Scholar 

  5. Li, A.-M., Penn, G.: Uniqueness theorems in affine differential geometry, part II. Result. Math. 13, 308–317 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Li, A.-M., Simon, U., Zhao, G.: Global Affine Differential Geometry of Hypersurfaces. de Gruyter Expositions in Mathematics, vol. 11. Walter de Gruyter, Berlin (1993)

    MATH  Google Scholar 

  7. Nomizu, K., Sasaki, T.: A new model of unimodular-affinely homogeneous surfaces. Manuscr. Math. 73, 39–44 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nomizu, K., Sasaki, T.: On certain quartic forms for affine surfaces. Tôhoku Math. J. 44(1), 25–33 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  10. Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine Differential Geometry of Hypersurfaces. Lecture Notes of the Science University of Tokyo (SUT) (1992), pp. 1–161, ISBN 3-7983-1529-9

  11. Vrancken, L., Li, A.-M., Simon, U.: Affine spheres with constant sectional curvature. Math. Z. 206, 651–658 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Weyl, H.: On the volume of tubes. Am. J. Math. 61(1), 461–472 (1939)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Binder.

Additional information

Communicated by V. Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, T. An affine invariant characterization of flat gravity curves. Abh. Math. Semin. Univ. Hambg. 79, 265–281 (2009). https://doi.org/10.1007/s12188-009-0021-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-009-0021-4

Keywords

Mathematics Subject Classification (2000)

Navigation