Multidimensional Poverty Among Adolescents in 38 Countries: Evidence from the Health Behaviour in School-aged Children (HBSC) 2013/14 Study

  • Yekaterina Chzhen
  • Zlata Bruckauf
  • Emilia Toczydlowska
  • Frank J. Elgar
  • Concepcion Moreno-Maldonado
  • Gonneke W.J.M. Stevens
  • Dagmar Sigmundová
  • Geneviève Gariépy
Article

Abstract

This study applied UNICEF’s Multiple Overlapping Deprivation Analysis (MODA) framework to adolescents (aged 11, 13 and 15) in 37 European countries and Canada using data from the 2013/14 Health Behaviour in School-aged Children survey. It is one of the first applications of MODA based entirely on data collected from adolescents themselves rather than from household reference persons on their behalf. Unlike most other multidimensional child poverty studies, the present analysis focuses on non-material, relational aspects of child poverty. Substantial cross-country variation was found in the prevalence of adolescent deprivations in nutrition, perceived health, school environment, protection from peer violence, family environment and information access. These single dimensions of poverty did not closely relate to national wealth and income inequality. However, when we looked at deprivation in three or more dimensions (i.e., multidimensional poverty), we found association with income inequality. In most countries, girls were at a higher risk of multidimensional poverty than boys. In addition, adolescents who lived with both parents in the household or reported higher family wealth were consistently less poor than other adolescents, in both single and multiple dimensions. The results of this study show the interconnectedness of social (family, school support) and psychological (health and violence) dimensions of poverty for adolescents in higher income countries. Children poor in the domains of family and school environment are also likely to be poor in terms of perceived health and protection from peer violence.

Keywords

Multidimensional poverty Adolescent well-being Health behaviour in school-aged children study Sustainable development goals 

Notes

Acknowledgements

The Health Behaviour in School-aged Children (HBSC) study is a World Health Organization collaborative study and is supported by each member country of the HBSC network (www.hbsc.org). The HBSC study is coordinated internationally by Dr. Joanna Inchley, University of St. Andrews, Scotland, with international data coordination performed by Dr. Oddrun Samdal, University of Bergen, Norway.

References

  1. Alemán-Díaz, A. Y., Toczydlowska, E., Mazur, J., Frasquilho, D., Melkumova, M., & Holmqvist, G. (2016). Why income inequalities matter for young people’s health: A look at the evidence. In Innocenti working paper 2016–06. Florence: UNICEF Office of Research.Google Scholar
  2. Alkire, S., Foster, J., Seth, S., Santos, M. E., Roche, J. M., & Ballon, P. (2015). Multidimensional poverty measurement and analysis. Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Bickham, D. S., Hswen, Y., & Rich, M. (2015). Media use and depression: Exposure, household rules, and symptoms among young adolescents in the United States. International Journal of Public Health, 60(2), 147–155. https://doi.org/10.1007/s00038-014-0647-6.CrossRefGoogle Scholar
  4. Bobakova, D., Hamrik, Z., Badura, P., Sigmundova, D., Nalecz, H., & Kalman, M. (2015). Test-retest reliability of selected physical activity and sedentary behaviour HBSC items in the Czech Republic, Slovakia and Poland. International Journal of Public Health, 60(1), 59–67. https://doi.org/10.1007/s00038-014-0628-9.CrossRefGoogle Scholar
  5. Boniel-Nissim, M., Tabak, I., Mazur, J., Borraccino, A., Brooks, F., Gommans, R., van der Sluijs, W., Zsiros, E., Craig, W., Harel-Fisch, Y., & Finne, E. (2015). Supporting communication withi parents moderates effects of electronic media use on life satisfaction during adolescence. International Journal of Public Health, 60(1), 189–198. https://doi.org/10.1007/s00038-014-0628-9.CrossRefGoogle Scholar
  6. Boyce, W., Davies, D., Gallupe, O., & Shelley, D. (2008). Adolescent risk taking, neighborhood social capital, and health. Journal of Adolescent Health, 43(3), 246–252. https://doi.org/10.1016/j.jadohealth.2008.01.014.CrossRefGoogle Scholar
  7. Bradshaw, J., & Richardson, D. (2009). An index of child well-being in Europe. Child Indicators Research, 2(3), 319–351. https://doi.org/10.1007/s12187-009-9037-7.CrossRefGoogle Scholar
  8. Brener, N., Kann, L., Shanklin, S., Kinchen, S., Eaton, D., Hawkins, J., et al. (2013). Methodology of the youth risk behavior surveillance system. MMWR. Recommendations and Reports: Morbidity and Mortality Weekly Report. Recommendations and Reports/Centers for Disease Control, 62(RR-1), 1–20.Google Scholar
  9. Brindova, D., Veselska, Z., Klein, D., Hamrik, Z., Sigmundova, D., van Dijk, J., et al. (2015). Is the association between screen-based behaviour and health complaints among adolescents moderated by physical activity? International Journal of Public Health, 60(2), 139–145. https://doi.org/10.1007/s00038-014-0627-x.CrossRefGoogle Scholar
  10. Brooks, F. M., Magnusson, J., Spencer, N., & Morgan, A. (2012). Adolescent multiple risk behaviour: An asset approach to the role of family, school and community. The Journal of Public Health, 34(suppl 1), i48–i56. https://doi.org/10.1093/pubmed/fds001.CrossRefGoogle Scholar
  11. Callaghan, M., Kelly, C., & Molcho, M. (2015). Exploring traditional and cyberbullying among Irish adolescents. International Journal of Public Health, 60(2), 199–206. https://doi.org/10.1007/s00038-014-0638-7.CrossRefGoogle Scholar
  12. Cavallo, F., Zambon, A., Raven-Sieberer, U., Torsheim, T., Lemma, P., & HBSC Positive Health Focus Group. (2006). Girls growing through adolescence have a higher risk of poor health. Quality of Life Research: an International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 15(10), 1577–1585. https://doi.org/10.1007/s11136-006-0037-5.CrossRefGoogle Scholar
  13. Cavallo, F., Dalmasso, P., Ottova -Jordan, V., Brooks, F., Mazur, J., Välimaa, R., et al. (2015). Trends in self-rated health in European and North-American adolescents from 2002 to 2010 in 32 countries. The European Journal of Public Health, 25(suppl 2), 13–15. https://doi.org/10.1093/eurpub/ckv011.CrossRefGoogle Scholar
  14. Chzhen, Y., & Ferrone, L. (2017). Multidimensional child deprivation and poverty measurement: Case study of Bosnia and Herzegovina. Social Indicators Research, 131(3), 999–1014. https://doi.org/10.1007/s11205-016-1291-8.
  15. Chzhen, Y., de Neubourg, C., de Milliano, M., & Plavgo, I. (2016a). Child poverty in the european union: The multiple overlapping deprivation analysis approach (EU-MODA). Child Indicators Research, 9(2), 335–336. https://doi.org/10.1007/s12187-015-9321-7.CrossRefGoogle Scholar
  16. Chzhen, Y., Moor, I., Pickett, W., Toczydlowska, E., & Stevens, G. (2016b). Family affluence and inequality in adolescent health and life satisfaction: Evidence from the HBSC study 2002-2014. In Innocenti working paper 2016–10. Florence: UNICEF Office of Research.Google Scholar
  17. Collins, W. A., & Laursen, B. (2004). Parent-adolescent relationships and influences. In R. M. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology (Vol. 2, pp. 331–362). N.J: Willey.Google Scholar
  18. Currie, C., Molcho, M., Boyce, W., Holstein, B., Torsheim, T., & Richter, M. (2008). Researching health inequalities in adolescents: The development of the health behaviour in school-aged children (HBSC) family affluence scale. Social Science & Medicine, 66(6), 1429–1436. https://doi.org/10.1016/j.socscimed.2007.11.024.CrossRefGoogle Scholar
  19. Currie, C., Inchley, J., Molcho, M., Lenzi, M., Veselska, Z., & Wild, F. e. (2014). Health behaviour in school-aged children (HBSC) study protocol: Background, methodology and mandatory items for the 2013/14 survey. Edinburgh: Child and Adolescent Health Research Unit.Google Scholar
  20. de Milliano, M., & Handa, S. (2014). Child poverty and deprivation in Mali: The first national estimates. In Innocenti working paper 2014–20. Florence: UNICEF Office of Research.Google Scholar
  21. de Milliano, M., & Plavgo, I. (2014). Analysing child poverty and deprivation in sub-Saharan Africa: CC-MODA – Cross country multiple overlapping deprivation analysis. In Innocenti working paper 2014–19. Florence: UNICEF Office of Research.Google Scholar
  22. de Neubourg, C., Chai, J., de Milliano, M., Plavgo, I., & Wei, Z. (2012). Step-by-step guidelines to the multiple overlapping deprivation analysis (MODA). In Working Paper 2012–10. Florence: UNICEF Office of Research.Google Scholar
  23. de Neubourg, C., de Milliano, M., & Plavgo, I. (2014). Lost (in) dimensions: Consolidating progress in multidimensional poverty research. In Innocenti working paper 2014–04. Florence: UNICEF Office of Research.Google Scholar
  24. Dmitrieva, J. (2013). Socioeconomic influences on health and health behavior in adolescents. In W. T. O'Donohue, L. T. Benuto, & L. Woodward Tolle (Eds.), Handbook of adolescent health psychology (pp. 43–60). New York: Springer.CrossRefGoogle Scholar
  25. Due, P., Holstein, B., Lynch, J., Diderichsen, F., Gabhain, S., Scheidt, P., et al. (2005). Bullying and symptoms among school-aged children: International comparative cross sectional study in 28 countries. The European Journal of Public Health, 15(2), 128–132. https://doi.org/10.1093/eurpub/cki105.CrossRefGoogle Scholar
  26. Doku, D., Koivusilta, L. & Rimpelä, A. (2010). Indicators for measuring material affluence of adolescents in health inequality research in developing countries. Child Indicators Research, 3(2), 243–260.Google Scholar
  27. Elgar, F., McKinnon, B., Walsh, S., Freeman, J., Donnelly P, D., de Matos, M., et al. (2015a). Structural determinants of youth bullying and fighting in 79 countries. Journal of Adolescent Health, 57(6), 643–650.CrossRefGoogle Scholar
  28. Elgar, F., Pförtner, T.-K., Moor, I., De Clercq, B., Stevens, G. W., & Currie, C. (2015b). Socioeconomic inequalities in adolescent health 2002–2010: A time-series analysis of 34 countries participating in the health behaviour in school-aged children study. The Lancet, 385(9982), 2088–2095. https://doi.org/10.1016/S0140-6736(14)61460-4.CrossRefGoogle Scholar
  29. Evans, G. W., & Kim, P. (2010). Multiple risk exposure as a potential explanatory mechanism for the socioeconomic status-health gradient. Annals of the New York Academy of Sciences, 1186(1), 174–189. https://doi.org/10.1111/j.1749-6632.2009.05336.x.CrossRefGoogle Scholar
  30. Fairlie, R. W. (2012). The effects of home access to technology on computer skills: Evidence from a field experiment. Information Economics and Policy, 24(3–4), 243–253. https://doi.org/10.1016/j.infoecopol.2012.06.001.CrossRefGoogle Scholar
  31. Fairlie, R. W., Beltran, D. O., & Das, K. K. (2010). Home computers and educational outcomes: Evidence from the NLSY97 and CPS. Economic Inquiry, 48(3), 771–792. https://doi.org/10.1111/j.1465-7295.2009.00218.x.CrossRefGoogle Scholar
  32. Fletcher, A. C., Steinberg, L., & Williams-Wheeler, M. (2004). Parental influences on adolescent problem behavior: Revisiting Stattin and Kerr. Child Development, 75(3), 781–796. https://doi.org/10.1111/j.1467-8624.2004.00706.x.CrossRefGoogle Scholar
  33. Gariepy, G., Sentenac, M., McKinnon, B., & Elgar, F. (2016). Validity and reliability of a brief symptom checklist to measure psychological health in school-aged children. Child Indicators Research, 9(2), 471–484. https://doi.org/10.1007/s12187-015-9326-2.CrossRefGoogle Scholar
  34. Gordon, D., Nandy, S., Pantazis, C., Pemberton, S., & Townsend, P. (2003). The distribution of child poverty in the developing world. Bristol: Centre for International Poverty Research.Google Scholar
  35. Guerra, N., & Hanish, L. D. (2004). Aggressive victims, passive victims, and bullies: Developmental continuity or developmental change? Merrill-Palmer Quarterly, 50(1), 17–38. https://doi.org/10.1353/mpq.2004.0003.CrossRefGoogle Scholar
  36. Guio, A.-C., Gordon, D., & Marlier, E. (2012). Measuring material deprivation in the EU: Indicators for the whole population and child-specific indicators. In Eurostat Methodologies and Working Papers. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  37. Hanson, M., & Chen, E. (2007). Socioeconomic status and health behaviors in adolescence: A review of the literature. Journal of Behavioral Medicine, 30(3), 263–285. https://doi.org/10.1007/s10865-007-9098-3.CrossRefGoogle Scholar
  38. Harel-Fisch, Y., Walsh, S. D., Fogel-Grinvald, H., Amitai, G., Pickett, W., Molcho, M., et al. (2011). Negative school perceptions and involvement in school bullying: A universal relationship across 40 countries. Journal of Adolescence, 34(4), 639–652. https://doi.org/10.1016/j.adolescence.2010.09.008.CrossRefGoogle Scholar
  39. Haugland, S., & Wold, B. (2001). Subjective health complaints in adolescence—Reliability and validity of survey methods. Journal of Adolescence, 24(5), 611–624. https://doi.org/10.1006/jado.2000.0393.CrossRefGoogle Scholar
  40. Haynie, D. L., Nansel, T., Eitel, P., Crump, A. D., Saylor, K., Yu, K., et al. (2001). Bullies, victims, and bully/victims: Distinct groups of at-risk youth. Journal of Early Adolescence, 21(1), 29–49. https://doi.org/10.1177/0272431601021001002.CrossRefGoogle Scholar
  41. Hemphill, S., Kotevski, A., & Heerde, J. (2015). Longitudinal associations between cyber-bullying perpetration and victimization and problem behavior and mental health problems in young Australians. International Journal of Public Health, 60(2), 227–237. https://doi.org/10.1007/s00038-014-0644-9.CrossRefGoogle Scholar
  42. Hong, J. S., & Espelage, D. L. (2012). A review of research on bullying and peer victimization in school: An ecological system analysis. Aggression and Violent Behavior, 17(4), 311–322. https://doi.org/10.1016/j.avb.2012.03.003.CrossRefGoogle Scholar
  43. Inchley, J., Currie, D., Young, T., Samdal, O., Torsheim, T., Augustson, L., et al. (2016). Growing up unequal: Gender and socioeconomic differences in young people’s health and well-being. Health behaviour in school-aged children (HBSC) study: International report from the 2013/2014 survey. Health policy for children and adolescents. Copenhagen: WHO Regional Office for Europe.Google Scholar
  44. International Monetary Fund (2016). World Economic Outlook Database. https://www.imf.org/external/pubs/ft/weo/2016/01/weodata/index.aspx. Accessed 11 April 2016.
  45. Kamerman, S. B., Neuman, M., Waldfogel, J., & Brooks-Gunn, J. (2003). Social policies, family types and child outcomes in selected OECD countries. In OECD Social, Employment and Migration Working Papers, No. 6. OECD Publishing.Google Scholar
  46. Kuhlemeier, H., & Hemker, B. (2007). The impact of computer use at home on students’ internet skills. Computers & Education, 49(2), 460–480. https://doi.org/10.1016/j.compedu.2005.10.004.CrossRefGoogle Scholar
  47. Lachytova, M., Katreniakova, Z., Mikula, P., & Nagyova, I. (2015). Self-rated health in relation to mental health, physical activity, sedentary behaviour in adolescents. The European Journal of Public Health, 25(suppl 3), ckv171. 081. https://doi.org/10.1093/eurpub/ckv171.081.Google Scholar
  48. Lau, M., & Bradshaw, J. (2016). Material well-being, social relationships and children's overall life satisfaction in Hong Kong. Child Indicators Research. https://doi.org/10.1007/s12187-016-9426-7.
  49. Lemma, P., Borraccino, A., Berchialla, P., Dalmasso, P., Charrier, L., Vieno, A., et al. (2015). Well-being in 15-year-old adolescents: A matter of relationship with school. The Journal of Public Health, 37(4), 573–580. https://doi.org/10.1093/pubmed/fdu095.Google Scholar
  50. Levin, K. A., & Currie, C. (2010). Family structure, mother-child communication, father-child communication, and adolescent life satisfaction: A cross-sectional multilevel analysis. Health Education, 110(3), 152–168. https://doi.org/10.1108/09654281011038831.CrossRefGoogle Scholar
  51. Li, J., McMurray, A., & Stanley, F. (2008). Modernity’s paradox and the structural determinants of child health and well-being. Health Sociology Review, 17(1), 64–77. https://doi.org/10.5172/hesr.451.17.1.64.CrossRefGoogle Scholar
  52. Liu, Y., Wang, M., Tynjälä, J., Lv, Y., Villberg, J., Zhang, Z., et al. (2010). Test-retest reliability of selected items of health behaviour in school-aged children (HBSC) survey questionnaire in Beijing, China. BMC Medical Research Methodology, 10(1), 1–9. https://doi.org/10.1186/1471-2288-10-73.CrossRefGoogle Scholar
  53. Machado-Rodrigues, A., Leite, N., Coelho-e-Silva, M., Enes, F., Fernandes, R., Mascarenhas, L., et al. (2015). Metabolic risk and television time in adolescent females. International Journal of Public Health, 60(2), 157–165. https://doi.org/10.1007/s00038-014-0625-z.CrossRefGoogle Scholar
  54. Mackenbach, J. P. (2012). The persistence of health inequalities in modern welfare states: The explanation of a paradox. Social Science & Medicine, 75(4), 761–769. https://doi.org/10.1016/j.socscimed.2012.02.031.CrossRefGoogle Scholar
  55. Main, G., & Bradshaw, J. (2012). A child material deprivation index. Child Indicators Research, 5(3), 503–521. https://doi.org/10.1007/s12187-012-9145-7.CrossRefGoogle Scholar
  56. Meireles, A., Xavier, C., de Souza, A. A., Proietti, F., & Caiaffa, W. (2015). Self-rated health among urban adolescents: The roles of age, gender, and their associated factors. PloS One, 10(7), e0132254. https://doi.org/10.1371/journal.pone.0132254.CrossRefGoogle Scholar
  57. Moreno, C., Muñoz-Tinoco, V., Pérez, P., & Sánchez-Queija, I. (2006). Los adolescentes españoles y sus familias: calidad en la comunicación con el padre y con la madre y conductas de riesgo relacionadas con el consumo de sustancias adictivas. Cultura y Educación, 18(3-4), 345–362. https://doi.org/10.1174/113564006779172975.CrossRefGoogle Scholar
  58. Moreno, C., Sánchez-Queija, I., Muñoz-Tinoco, V., Matos, M. G., Dallago, L., Bogt, T. T., et al. (2009). Cross-national associations between parent and peer communication and psychological complaints. International Journal of Public Health, 54(2), 235–242. https://doi.org/10.1007/s00038-009-5415-7.CrossRefGoogle Scholar
  59. Nuutinen, T., Roos, E., Ray, C., Villberg, J., Välimaa, R., Rasmussen, M., et al. (2014). Computer use, sleep duration and health symptoms: A cross-sectional study of 15-year olds in three countries. International Journal of Public Health, 59(4), 619–628. https://doi.org/10.1007/s00038-014-0561-y.CrossRefGoogle Scholar
  60. Olweus, D. (1996). The revised Olweus bully/victim questionnaire. Bergen: University of Bergen.Google Scholar
  61. Pedersen, T. P., Meilstrup, C., Holstein, B. E., & Rasmussen, M. (2012). Fruit and vegetable intake is associated with frequency of breakfast, lunch and evening meal: Cross-sectional study of 11-, 13-, and 15-year-olds. The International Journal of Behavioral Nutrition and Physical Activity, 9(1), 9. https://doi.org/10.1186/1479-5868-9-9.CrossRefGoogle Scholar
  62. Rampersaud, G., Pereira, M., Girard, B., Adams, J., & Metzl, J. (2005). Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. Journal of the American Dietetic Association, 105(5), 743–760. https://doi.org/10.1016/j.jada.2005.02.007.CrossRefGoogle Scholar
  63. Richter, M., Moor, I., & van Lenthe, F. J. (2012). Explaining socioeconomic differences in adolescent self-rated health: The contribution of material, psychosocial and behavioural factors. Journal of Epidemiology and Community Health, 66(8), 691–697. https://doi.org/10.1136/jech.2010.125500.CrossRefGoogle Scholar
  64. Ridolfo, H., & Maitland, A. (2011). Factors that influence the accuracy of adolescent proxy reporting of parental characteristics: A research note. Journal of Adolescence, 34(1), 95–103. https://doi.org/10.1016/j.adolescence.2010.01.008.CrossRefGoogle Scholar
  65. Rubin, D. B. (1987). Multiple imputation for non-response in surveys. New York: Wiley.CrossRefGoogle Scholar
  66. Schafer, J. L. (1997). Analysis of incomplete multivariate data. Boca Raton: Chapman & Hall/CRC.CrossRefGoogle Scholar
  67. Sinclair, K., Bauman, S., Poteat, V., Koenig, B., & Russell, S. (2012). Cyber and bias-based harassment: Associations with academic, substance use, and mental health problems. Journal of Adolescent Health, 50(5), 521–523. https://doi.org/10.1016/j.jadohealth.2011.09.009.CrossRefGoogle Scholar
  68. Smokowski, P. R., & Kopasz, K. H. (2005). Bullying in school: An overview of types, effects, family characteristics, and intervention strategies. Children and Schools, 27(2), 101–110. https://doi.org/10.1093/cs/27.2.101.CrossRefGoogle Scholar
  69. Solt, F. (2014). The standardized world income inequality database (SWIID) version 5.0., Harvard Dataverse, V14. https://dataverse.harvard.Edu/dataset.Xhtml?persistentId=hdl:1902.1/11992. Accesed 05 July 2016.
  70. Sourander, A., Brunstein, K. A., Ikonen, M., Lindroos, J., Luntamo, T., Koskelainen, M., et al. (2010). Psychosocial risk factors associated with cyberbullying among adolescents: A population-based study. Archives of General Psychiatry, 67(7), 720–728. https://doi.org/10.1001/archgenpsychiatry.2010.79.CrossRefGoogle Scholar
  71. Spears, B., Campbell, M. A., Tangen, D. J., Slee, P., & Cross, D. (2015). Australian pre-service teachers' knowledge and understanding of cyberbullying: Implications for school climate. Les Dossiers des Sciences de l'Éducation, 33, 109–130.CrossRefGoogle Scholar
  72. Steinberg, L., & Silk, J. S. (2002). Parenting adolescents. In M. Bornstein (Ed.), Handbook of parenting, 1 (Vol. 1, pp. 103–133). Mahwah: Lawrence Erlbaum Associates, Publishers.Google Scholar
  73. Story, M., & Stang, J. (2005). Nutrition needs of adolescents. In J. Stang & M. Story (Eds.), Guidelines for adolescent nutrition services (pp. 21–34). Minneapolis: University of Minnesota.Google Scholar
  74. Subrahmanyam, K., Greenfield, P., Kraut, R., & Gross, E. (2001). The impact of computer use on children's and adolescents' development. Journal of Applied Developmental Psychology, 22(1), 7–30. https://doi.org/10.1016/S0193-3973(00)00063-0.CrossRefGoogle Scholar
  75. Torsheim, T., Wold, B., & Samdal, O. (2000). The teacher and classmate support scale factor structure, test-retest reliability and validity in samples of 13-and 15-year-old adolescents. School Psychology International, 21(2), 195–212.CrossRefGoogle Scholar
  76. Tremblay, M. S., LeBlanc, A. G., Kho, M. E., Saunders, T. J., Larouche, R., Colley, R. C., et al. (2011). Systematic review of sedentary behaviour and health indicators in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 98. https://doi.org/10.1186/1479-5868-8-98.CrossRefGoogle Scholar
  77. UNICEF. (2007). Child poverty in perspective: An overview of child well-being in rich countries. In Innocenti report card 7. Florence: UNICEF Innocenti Research Centre.Google Scholar
  78. UNICEF. (2016). Fairness for children: A league table of inequality in child well-being in rich countries. In Innocenti report card 13. Florence: UNICEF Innocenti Research Centre.Google Scholar
  79. United Nations (1989). Convention on the rights of the child (CRC). http://www.ohchr.org/Documents/ProfessionalInterest/crc.pdf Accessed 05 July 2016.
  80. Vereecken, C., Pedersen, T. P., Ojala, K., Krølner, R., Dzielska, A., Ahluwalia, N., et al. (2015). Fruit and vegetable consumption trends among adolescents from 2002 to 2010 in 33 countries. The European Journal of Public Health, 25(suppl 2), 16–19. https://doi.org/10.1093/eurpub/ckv012.CrossRefGoogle Scholar
  81. Viner, R. M., Ozer, E. M., Denny, S., Marmot, M., Resnick, M., Fatusi, A., et al. (2012). Adolescent health 2 adolescence and the social determinants of health. The Lancet, 379(9826), 1641–1652. https://doi.org/10.1016/s0140-6736(12)60149-4.CrossRefGoogle Scholar
  82. Voráčová, J., Sigmund, E., Sigmundová, D., & Kalman, M. (2015). Changes in eating behaviours among Czech children and adolescents from 2002 to 2014 (HBSC study). International Journal of Environmental Research and Public Health, 12(12), 15888–15899. https://doi.org/10.3390/ijerph121215028.CrossRefGoogle Scholar
  83. Walsh, S. D., Bruckauf, Z., & Gaspar, T. (2016). Adolescents at risk: Psychosomatic health complaints, low life satisfaction, excessive sugar consumption and their relationship with cumulative risks. In Innocenti working paper 2016–13. Florence: UNICEF Office of Research.Google Scholar
  84. Woodward, M., Oliphant, J., Lowe, G., & Tunstall-Pedoe, H. (2003). Contribution of contemporaneous risk factors to social inequality in coronary heart disease and all causes mortality. Preventive Medicine, 36(5), 561–568. https://doi.org/10.1016/S0091-7435(03)00010-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yekaterina Chzhen
    • 1
  • Zlata Bruckauf
    • 1
  • Emilia Toczydlowska
    • 1
  • Frank J. Elgar
    • 2
  • Concepcion Moreno-Maldonado
    • 3
  • Gonneke W.J.M. Stevens
    • 4
  • Dagmar Sigmundová
    • 5
  • Geneviève Gariépy
    • 6
  1. 1.UNICEF Office of Research-InnocentiFlorenceItaly
  2. 2.Institute for Health and Social Policy and Douglas InstituteMcGill UniversityMontrealCanada
  3. 3.Department of Developmental and Educational PsychologyUniversity of SevilleSevilleSpain
  4. 4.Utrecht Centre for Child and Adolescent StudiesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Faculty of Physical CulturePalacký University OlomoucOlomoucCzech Republic
  6. 6.Institute for Health and Social PolicyMcGill UniversityMontrealCanada

Personalised recommendations