Skip to main content
Log in

Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Almatani MF, Ali A, Onyemaechi S, Zhao Y, Gutierrez L, Vaikari VP, et al. Strategies targeting FLT3 beyond the kinase inhibitors. Pharmacol Ther. 2021;225:107844. https://doi.org/10.1016/j.pharmthera.2021.107844.

    Article  CAS  PubMed  Google Scholar 

  2. Li G, Zhou Z, Yang W, Yang H, Fan X, Yin Y, et al. Long-term cardiac-specific mortality among 44,292 acute myeloid leukemia patients treated with chemotherapy: a population-based analysis. J Cancer. 2019;10(24):6161–9. https://doi.org/10.7150/jca.36948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stetson LC, Balasubramanian D, Ribeiro SP, Stefan T, Gupta K, Xu X, et al. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression. Leukemia. 2021;35(10):2799–812. https://doi.org/10.1038/s41375-021-01338-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stengel S, Petrie KR, Sbirkov Y, Stanko C, Ghazvini Zadegan F, Gil V, et al. Suppression of MYC by PI3K/AKT/mTOR pathway inhibition in combination with all-trans retinoic acid treatment for therapeutic gain in acute myeloid leukaemia. Br J Haematol. 2022. https://doi.org/10.1111/bjh.18187.

    Article  PubMed  Google Scholar 

  5. Bou-Tayeh B, Laletin V, Salem N, Just-Landi S, Fares J, Leblanc R, et al. Chronic IL-15 stimulation and impaired mTOR signaling and metabolism in natural killer cells during acute myeloid leukemia. Front Immunol. 2021;12:730970. https://doi.org/10.3389/fimmu.2021.730970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang T, Zhang WS, Wang ZX, Wu ZW, Du BB, Li LY, et al. RAPTOR promotes colorectal cancer proliferation by inducing mTORC1 and upregulating ribosome assembly factor URB1. Cancer Med. 2020;9(4):1529–43. https://doi.org/10.1002/cam4.2810.

    Article  CAS  PubMed  Google Scholar 

  7. Laukkanen S, Bacquelaine Veloso A, Yan C, Oksa L, Alpert EJ, Do D, et al. Combination therapies to inhibit LCK tyrosine kinase and mTOR signaling in T-cell Acute Lymphoblastic Leukemia. Blood. 2022. https://doi.org/10.1182/blood.2021015106.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lampis S, Raieli S, Montemurro L, Bartolucci D, Amadesi C, Bortolotti S, et al. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma. J Exp Clin Cancer Res. 2022;41(1):160. https://doi.org/10.1186/s13046-022-02367-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 2006;66(20):10040–7. https://doi.org/10.1158/0008-5472.CAN-06-0802.

    Article  CAS  PubMed  Google Scholar 

  10. Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther. 2006;5(12):3209–21. https://doi.org/10.1158/1535-7163.MCT-06-0478.

    Article  PubMed  Google Scholar 

  11. Brown VI, Fang J, Alcorn K, Barr R, Kim JM, Wasserman R, et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Natl Acad Sci U S A. 2003;100(25):15113–8. https://doi.org/10.1073/pnas.2436348100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2008;14(9):2756–62. https://doi.org/10.1158/1078-0432.CCR-07-1372.

    Article  CAS  PubMed  Google Scholar 

  13. Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12(17):5165–73. https://doi.org/10.1158/1078-0432.CCR-06-0764.

    Article  CAS  PubMed  Google Scholar 

  14. Xu Q, Thompson JE, Carroll M. mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood. 2005;106(13):4261–8. https://doi.org/10.1182/blood-2004-11-4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105(6):2527–34. https://doi.org/10.1182/blood-2004-06-2494.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, et al. A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23), p53 gene alterations and high tumorigenicity in nude mice. Haematologica. 2005;90(6):766–75.

    CAS  PubMed  Google Scholar 

  17. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23(18):3151–71. https://doi.org/10.1038/sj.onc.1207542.

    Article  CAS  PubMed  Google Scholar 

  18. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45. https://doi.org/10.1101/gad.1212704.

    Article  CAS  PubMed  Google Scholar 

  19. Tabe Y, Tafuri A, Sekihara K, Yang H, Konopleva M. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets. 2017;21(7):705–14. https://doi.org/10.1080/14728222.2017.1333600.

    Article  CAS  PubMed  Google Scholar 

  20. Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95(5):819–28. https://doi.org/10.3324/haematol.2009.013797.

    Article  CAS  PubMed  Google Scholar 

  21. Nepstad I, Hatfield KJ, Gronningsaeter IS, Reikvam H. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) Cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21082907.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem. 2019;26(12):2208–29. https://doi.org/10.2174/0929867325666180117105522.

    Article  CAS  PubMed  Google Scholar 

  23. Liesveld JL, Baran A, Azadniv M, Misch H, Nedrow K, Becker M, et al. A phase II study of sequential decitabine and rapamycin in acute myelogenous leukemia. Leuk Res. 2022;112:106749. https://doi.org/10.1016/j.leukres.2021.106749.

    Article  CAS  PubMed  Google Scholar 

  24. Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: a review of current evidences and future perspectives. Cancer Treat Rev. 2019;72:45–55. https://doi.org/10.1016/j.ctrv.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  25. Dai YJ, Wang YY, Huang JY, Xia L, Shi XD, Xu J, et al. Conditional knockin of Dnmt3a R878H initiates acute myeloid leukemia with mTOR pathway involvement. Proc Natl Acad Sci U S A. 2017;114(20):5237–42. https://doi.org/10.1073/pnas.1703476114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shams R, Ito Y, Miyatake H. Mapping of mTOR drug targets: Featured platforms for anti-cancer drug discovery. Pharmacol Ther. 2022;232:108012. https://doi.org/10.1016/j.pharmthera.2021.108012.

    Article  CAS  PubMed  Google Scholar 

  27. Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener. 2021;16(1):44. https://doi.org/10.1186/s13024-021-00428-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Battaglioni S, Benjamin D, Walchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–36. https://doi.org/10.1016/j.cell.2022.04.013.

    Article  CAS  PubMed  Google Scholar 

  29. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15(21):2852–64. https://doi.org/10.1101/gad.912401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71(7):2590–9. https://doi.org/10.1158/0008-5472.CAN-10-3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim JY, Kim JH, Kim YD, Seo JH. Ultrafine diesel exhaust particles induce apoptosis of oligodendrocytes by increasing intracellular reactive oxygen species through nadph oxidase activation. Antioxidants (Basel). 2022. https://doi.org/10.3390/antiox11051031.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB. CYR61 controls p53 and NF-kappaB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett. 2012;315(1):86–95. https://doi.org/10.1016/j.canlet.2011.10.016.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Wu Y, Xu C, Sun W, You Z, Wang Y, et al. CHMP1A suppresses the growth of renal cell carcinoma cells via regulation of the PI3K/mTOR/p53 signaling pathway. Genes Genomics. 2022. https://doi.org/10.1007/s13258-022-01237-w.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64. https://doi.org/10.1016/s0092-8674(02)00625-6.

    Article  CAS  PubMed  Google Scholar 

  35. Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157(1):65–75. https://doi.org/10.1016/j.cell.2014.02.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohashi Y, Tremel S, Williams RL. VPS34 complexes from a structural perspective. J Lipid Res. 2019;60(2):229–41. https://doi.org/10.1194/jlr.R089490.

    Article  CAS  PubMed  Google Scholar 

  37. Rabanal-Ruiz Y, Otten EG, Korolchuk VI. mTORC1 as the main gateway to autophagy. Essays Biochem. 2017;61(6):565–84. https://doi.org/10.1042/EBC20170027.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Ma P, Shao T, Xiong Y, Du Q, Chen S, et al. Porcine parvovirus triggers autophagy through the AMPK/Raptor/mTOR pathway to promote viral replication in porcine placental trophoblasts. Vet Res. 2022;53(1):33. https://doi.org/10.1186/s13567-022-01048-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82260037) and Jiangxi “5511” Science and Technology Innovation Talent Project (Grant No. 20171BCB18003).

Author information

Authors and Affiliations

Authors

Contributions

J.X. and Z.J.L. designed the study. J.X., S.Z., T.S., J.F.Z., Q.W., and Q.M.W. preformed the experiment. J.X., S.Z., T.S., A.P.T., Y.S., and Y.F. analyzed the data. J.X. drafted the manuscript. Z.J.L. supervised the study and revised the manuscript.

Corresponding author

Correspondence to Zhenjiang Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All the animal experiment protocols were approved by the Ethics Committee of the Nanchang Royo Biotech Co,. Ltd (Approve number: RYE2018030601), and all methods were followed in accordance with the approved guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zong, S., Sheng, T. et al. Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03732-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03732-0

Keywords

Navigation