Skip to main content
Log in

Hereditary TTP/Upshaw–Schulman syndrome: the ductus arteriosus controls newborn survival

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hereditary TTP (hTTP), termed Upshaw–Schulman syndrome, is an ultra-rare disorder caused by a severe deficiency of plasma ADAMTS13 activity that allows circulation of ultra-large von Willebrand factor (UL-VWF) multimers. The greatest risk for hTTP is in their first days after birth, when 35–50% of patients will have severe hemolysis, jaundice, and thrombocytopenia. It is often fatal without effective treatment. In utero, fetal blood flowing from the pulmonary artery through the ductus arteriosus (DA) to the aorta is under low-shear-force. At birth, blood flow through the DA reverses to a left-to-right shunt, and the diameter of the DA begins to decrease due to hyper-oxygenated blood and decreased plasma prostaglandin E2. This causes turbulent circulation that unfolds UL-VWF, allowing platelet aggregation. If the DA closes promptly, hTTP newborns survive, but if it remains patent, turbulent circulation persists, triggering microvascular thrombosis. hTTP is commonly diagnosed as hemolytic disease of the fetus and newborn (HDFN) caused by anti-red cell antibodies and treated with exchange blood transfusion, which prevents kernicterus even when the diagnosis of hTTP is missed. The diagnosis of newborn-onset hTTP should be considered because HDFN does not cause severe thrombocytopenia, which might be effectively treated with recombinant ADAMTS13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Moises KJ. Hemolytic disease of the fetus and newborn. In: Creasy RK, Iams JD, Lockwood CJ, Moore TR, editors. Creasy & Resnik’s maternal-fetal medicine; principles and practice. 6th ed. Philadephia, PA: Elsevier; 2009. p. 477–503.

    Chapter  Google Scholar 

  2. De Haas M, Finning K, Massey E, Roberts DJ. Anti-D prophylaxis: past, present and future. Transfus Med. 2014;24(1):1–7.

    Article  PubMed  Google Scholar 

  3. Grundbacher FJ. The etiology of ABO hemolytic disease of the newborn. Transfusion. 1980;20(5):563–8.

    Article  CAS  PubMed  Google Scholar 

  4. Rath MEA, Smits-Wintjnes VEHJ, Oepkes D, van Zwet EW, van Kamp IL, Brand A, et al. Thrombocytopenia at birth in neonates with red cell alloimmune haemolytic disease. Vox Sang. 2012;102(3):228–33.

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto M, Miyakawa Y, Kokame K, Ueda Y, Wada H, Higasa S, et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) in Japan. Int J Hematol. 2023. https://doi.org/10.1007/s12185-023-03657-0.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kokame K, Kokubo Y, Miyata T. Polymorphisms and mutations of ADAMTS13 in the Japanese population and estimation of the number of patients with Upshaw-Schulman syndrome. J Thromb Haemost. 2011;9(8):1654–6.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao T, Fan S, Sun L. The global carrier frequency and genetic prevalence of Upshaw-Schulman syndrome. BMC Genomic Data. 2021;22:22–50.

    Article  Google Scholar 

  8. Kremer-Hovinga JA, George JN. Hereditary thrombotic thrombocytopenic purpura. New Eng J Med. 2019;381(17):1653–62.

    Article  PubMed  Google Scholar 

  9. Stubbs MJ, Kendall G, Scully M. Recombinant ADAMTS13 in severe neonatal thrombotic thrombocytopenic purpura. New Engl J Med. 2022;387(25):2391–2.

    Article  PubMed  Google Scholar 

  10. Monnens LA, Retera RJ. Thrombotic thrombocytopenic purpura in a neonatal infant. J Pediatrics. 1967;71(1):118–23.

    Article  CAS  Google Scholar 

  11. Kinoshita S, Yoshioka A, Park Y-D, Ishizashi H, Konno M, Funato M, et al. Upshaw-Schulman syndrome revisited: a concept of congenital thrombotic thrombocytopenic purpura. Int J Hematol. 2001;74:101–8.

    Article  CAS  PubMed  Google Scholar 

  12. Levy GG, Nichols WC, Lian EC, Foroud F, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.

    Article  CAS  PubMed  Google Scholar 

  13. Fujimura Y, Matsumoto M, Isonishi A, Yagi H, Kokame K, Soejima K, et al. Natural history of Upshaw-Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost. 2011;9(Suppl 1):283–301.

    Article  CAS  PubMed  Google Scholar 

  14. Fujimura Y, Kokame K, Yagi H, Isonishi A, Matsumtoto M, Miyata T. Hereditary deficiency of ADAMTS13 activity: Upshaw-Schulman syndrome. In: Rodgers GM, editor. ADAMTS13 biology and disease. Cham: Springer; 2015. p. 73–90.

    Chapter  Google Scholar 

  15. Fujimura Y, Lämmle B, Tanabe S, Sakai K, Kimura T, Kokame K, et al. Patent ductus arteriosus generates neonatal hemolytic jaundice with thrombocytopenia in Upshaw-Schulman syndrome. Blood Adv. 2019;3(21):3191–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sakai K, Hamada E, Kokame K, Matsumoto M. Congenital thrombotic thrombocytopenic purpura: genetics and emerging therapies. Ann Blood. 2023;8:24.

    Article  Google Scholar 

  17. von Krogh AS, Quist-Paulsen P, Waage A, Langseth OO, Thorstensen K, Brudevold R, et al. High prevalence of hereditary thrombotic thrombocytopenic purpura in central Norway: from clinical observations to evidence. J Thromb Haemost. 2016;14:73–82.

    Article  Google Scholar 

  18. Tarasco E, Butikofer L, Friedman KD, George JN, Hrachovinova I, Knöbl PN, et al. Annual incidence and severity of acute episodes in hereditary thrombotic thrombocytopenic purpura. Blood. 2021;137(25):3563–75.

    Article  CAS  PubMed  Google Scholar 

  19. Joly BS, Boisseau P, Roose E, Stepanian A, Biebuyck N, Hogan J, et al. ADAMTS13 gene mutations influence ADAMTS13 conformation and disease age-onset in the French cohort of Upshaw-Schulman syndrome. Thromb Haemost. 2018;118(11):1902–17.

    Article  PubMed  Google Scholar 

  20. Alwan F, Vendramin C, Liesner R, Clark A, Lester W, Dutt T, et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood. 2019;133(15):1644–51.

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Zhang Y, Li Z, Zhang L, Jian S, Wang C, et al. Early indicators of neonatal onset of hereditary thrombotic thrombocytopenic purpura. Res Pract Thromb Haemost. 2022;6(7): e12820. https://doi.org/10.1002/rth2.12820.eCollection.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Furlan M, Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haemat. 2001;14(2):437–54.

    Article  CAS  Google Scholar 

  23. George JN. Hereditary thrombotic thrombocytopenic purpura: the risk for death at birth. Res Pract Thromb Haemost. 2022;6: e12840. https://doi.org/10.1002/rth2.40.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao Y, Usha-Raj J. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90(4):1291–335.

    Article  CAS  PubMed  Google Scholar 

  25. Jain A, Mohamed A, Kavanaugh B, Shah PS, Kuipers BCW, El-Khuiffash A, et al. Cardiopulmonary adaptation during the first day of life in human neonates. J Pediat. 2018;200(1):50–7.

    Article  PubMed  Google Scholar 

  26. Parkerson S, Philip R, Talati A, Sathanandam S. Management of patent ductus arteriosus in premature infants in 2020. Front Pediatr. 2021;8: 590578. https://doi.org/10.3389/fped.2020.590578.eCollection.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schneider DJ, Moore JW. Patent ductus arteriosus. Circulation. 2006;114(17):1873–82.

    Article  PubMed  Google Scholar 

  28. Hung Y-C, Yeh J-L, Hsu J-H. Molecular mechanisms for regulating postnatal ductus arteriosus closure. Int J Mol Sci. 2018;19(7):1861. https://doi.org/10.3390/ijms19071861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Echtler K, Stark K, Lorenz M, Kerstan S, Walch A, Jennen L, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nature Med. 2010;16(1):75–82. https://doi.org/10.1038/nm.2060.

    Article  CAS  PubMed  Google Scholar 

  30. Yokoyama U, Minamisawa S, Quan H, Ghatak S, Akaike T, Segi-Nisbhida E, et al. Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Invest. 2006;116(11):3026–34. https://doi.org/10.1172/JCI28639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. New Eng J Med. 1982;307(23):1432–5.

    Article  CAS  PubMed  Google Scholar 

  32. Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. New Eng J Med. 1977;297:1386–9.

    Article  CAS  PubMed  Google Scholar 

  33. Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis: I. A factor in normal plasma required for platelet production: chronic thrombocytopenia due to its deficiency. Blood. 1960;16(1):943–57.

    Article  CAS  PubMed  Google Scholar 

  34. Lian ECY, Harkness DR, Byrnes JJ, Wallach H, Nunez R. Presence of a platelet aggregating factor in the plasma of patients with thrombotic thrombocytopenic purpura (TTP) and its inhibition by normal plasma. Blood. 1979;53:333–8.

    Article  CAS  PubMed  Google Scholar 

  35. Upshaw JDJ. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. New Eng J Med. 1978;298(24):1350–2.

    Article  PubMed  Google Scholar 

  36. Kalagara T, Moutsis T, Yang Y, Pappelbaum KI, Farken A, Cladder-Micus L, et al. The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood adv. 2018;18:2347–57.

    Article  Google Scholar 

  37. Dong J-F, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002;100(12):4033–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shao B, Nusrat S, George JN, Xia L. Aspirin prophylaxis for hereditary and acquired thrombotic thrombocytopenic purpura. Amer J Hematolo. 2022;97:E304–6.

    Article  CAS  Google Scholar 

  39. Johnson SS, Montgomery RR, Hathaway W. Newborn factor VIII complex: elevated activities in term infants and alterations in electrophoretic mobility related to illness and activated coagulation. Brit J Haematol. 1981;47(4):597–660.

    Article  CAS  Google Scholar 

  40. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70:165–72.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas KB, Sutor AH, Altinkaya N, Grohmann A, Zehenter A, Leititis JU. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84:697–9.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai HM, Sarode R, Downes KA. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2–3):121–5.

    Article  CAS  PubMed  Google Scholar 

  43. Schmugge M, Dunn MS, Amankwah KS, Blanchette VS, Freedman J, Rand ML. The activity of the von Willebrand factor-cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2:228–33.

    Article  CAS  PubMed  Google Scholar 

  44. Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood. 2001;98(9):2730–5.

    Article  CAS  PubMed  Google Scholar 

  45. Hellstrom-Westas L, Ley D, Berg A-C, Kristoffersson A-C, Holmberg L. VWF-cleaving protease (ADAMTS13) in premature infants. Acta Paediatr. 2005;94(2):205–10.

    Article  PubMed  Google Scholar 

  46. Feys HB, Canciani MT, Peyvandi F, Deckmyn H, Vanhoorelbeke K, Mannucci PM. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Brit J Haematol. 2007;138(4):534–40.

    Article  CAS  Google Scholar 

  47. Katz JA, Moake JL, McPherson PD, Weinstein MJ, Moise KJ, Carpenter RJ, et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood. 1989;73(7):1851–8.

    Article  CAS  PubMed  Google Scholar 

  48. Weinstein MJ, Blanchard R, Moake JL, Vosburgh E, Moise K. Fetal and neonatal von Willebrand factor (vWF) is unusually large and similar to the vWF in patients with thrombotic thrombocytopenic purpura. Br J Haematol. 1989;72(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  49. Ferrer-Marin F, Sola-Visner M. Neonatal platelet physiology and implications for transfusion. Platelets. 2022;33(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  50. Corby DG, O’Barr TP. Decreased alpha-adrenergic receptors in newborn platelets: cause of abnormal response to epinephrine. Dev Pharmacol Ther. 1981;2(4):215–25.

    Article  CAS  PubMed  Google Scholar 

  51. Schlagenhauf A, Schweintzger S, Birner-Gruenberger R, Leschnik B, Muntean W. Newborn platelets: lower levels of protease-activated receptors cause hypoaggregability to thrombin. Platelets. 2010;21(8):641–7. https://doi.org/10.3109/09537104.2010.504869.

    Article  CAS  PubMed  Google Scholar 

  52. Caparros-Perez E, Teruel-Montoya R, Lopez-Andreo MJ, Llanos MC, Rivera J, Palma-Barqueros V, et al. Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS ONE. 2017;12(8): e0183042. https://doi.org/10.1371/journal.pone.0183042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gross GP, Hathaway WE, McGaughey HR. Hyperviscosity in the neonate. J Pediatr. 1973;82(6):1004–12. https://doi.org/10.1016/s0022-3476(73)80433-0.

    Article  CAS  PubMed  Google Scholar 

  54. Kajino H, Chen Y-Q, Seidner SR, Waleh N, Mauray F, Roman C, et al. Factors that increase the contractile tone of the ductus arteriosus also regulate its anatomic remodeling. Am J Physiol Regul Integr Comp Physiol. 2001;281(1):R291–301. https://doi.org/10.1152/ajpregu.2001.281.1.R291.

    Article  CAS  PubMed  Google Scholar 

  55. Mydam J, Alok Rastogi A, Naheed ZJ. Base excess and hematocrit predict response to indomethacin in very low birth weight infants with patent ductus arteriosus. Ital J Pediatr. 2019;45(1):107. https://doi.org/10.1186/s13052-019-0706-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsujii N, Shiraishi I, Kokame K, Shima M, Fujimura Y, Takahashi Y, et al. Severe hemolysis and pulmonary hypertension in a neonate with Upshaw-Schulman syndrome. Pediatrics. 2016;138(6): e20161565. https://doi.org/10.1542/peds.2016-1565.

    Article  PubMed  Google Scholar 

  57. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–9.

    Article  CAS  PubMed  Google Scholar 

  58. Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45:136–60.

    Article  Google Scholar 

  59. Wilkie ME, Stevens CR, Cunningham J, Blake D. Hypoxia-induced von Willebrand factor release is blocked by verapamil. Miner Electrolyte Metab. 1992;18(2–5):141–4.

    CAS  PubMed  Google Scholar 

  60. Pinsky DJ, Naka Y, Liao H, Oz MC, Wagner DD, Mayadas TN, et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest. 1996;97(2):493–500. https://doi.org/10.1172/JCI118440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujimura Y, Holland LZ. COVID-19 microthrombosis: unusually large VWF multimers are a platform for activation of the alternative complement pathway under cytokine storm. Int J Hematol. 2022;115(4):457–69. https://doi.org/10.1007/s12185-022-03324-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion. 2006;46(8):1444–52. https://doi.org/10.1111/j.1537-2995.2006.00914.x.

    Article  CAS  PubMed  Google Scholar 

  63. Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic assay for ADAMTS13 activity. Br J Haematol. 2005;129(1):93–100. https://doi.org/10.1111/j.1365-2141.2005.05420.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges to Prof. James N. George of University of Oklahoma Health Science Center and Prof. Bernhard Lämmle of University Bern for their critical reading of this manuscript. The author also thanks to Dr. Saori Tanabe of Nihonkai General Hospital, Drs. Yoshihiko Sakurai and Tomoya Hayashi of Japanese Red Cross Kinki Block Blood Center, and Drs. Ayami Isonishi and Kazuya Sakai, and Prof. Masanori Matsumoto of Nara Medical University for collecting the data for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Fujimura.

Ethics declarations

Conflict of interest

This project had no outside support. YF receives a patent royalty for ADAMTS13-act-ELISA from Alfresa Pham. (Japan).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimura, Y. Hereditary TTP/Upshaw–Schulman syndrome: the ductus arteriosus controls newborn survival. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03731-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03731-1

Keywords

Navigation