Skip to main content

Advertisement

Log in

Effectiveness of venetoclax and azacytidine against myeloid/natural killer cell precursor acute leukemia

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) is a rare leukemia subtype that possibly originates from precursor NK cells. The disease has a poor prognosis, and information on its treatment is lacking. We herein report the first case of a 46-year-old woman with MNKPL who was refractory to two lines of acute myeloid leukemia (AML)-type intensive chemotherapy but was successfully treated with venetoclax and azacytidine (VEN/AZA). She was diagnosed with MNKPL based on the conformations of immature lymphoblastoid morphology without myeloperoxidase reactivity that showed a CD7/CD33/CD34/CD56/HLA-DR positive phenotype and extramedullary regions. The disease was refractory to induction therapy with daunorubicin and cytarabine (DNR/Ara-C) and to reinduction therapy with mitoxantrone, etoposide, and cytarabine (MEC). After two lines of induction chemotherapy, massive pericardial and pleural effusion was found, and was suspected to be extramedullary lesions. The patient developed cardiac tamponade and required pericardiocentesis. Thus, VEN/AZA was administered as third-line therapy. After two cycles of VEN/AZA, the pericardial and pleural effusion disappeared, and complete remission was achieved. The patient received post-transplant cyclophosphamide-based haploidentical transplantation and has stayed relapse-free as of her last follow-up examination 2 years after diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Suzuki R, Yamamoto K, Seto M, Kagami Y, Ogura M, Yatabe Y, et al. CD7+ and CD56+ myeloid/natural killer cell precursor acute leukemia: a distinct hematolymphoid disease entity. Blood. 1997;90(6):2417–28.

    Article  CAS  PubMed  Google Scholar 

  2. Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139(4):532–44.

    Article  CAS  PubMed  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017.

    Google Scholar 

  4. Suzuki R, Murata M, Kami M, Ohtake S, Asou N, Kodera Y, et al. Prognostic significance of CD7+CD56+ phenotype and chromosome 5 abnormalities for acute myeloid leukemia M0. Int J Hematol. 2003;77(5):482–9.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki R, Nakamura S. Malignancies of natural killer (NK) cell precursor: myeloid/NK cell precursor acute leukemia and blastic NK cell lymphoma/leukemia. Leuk Res. 1999;23(7):615–24.

    Article  CAS  PubMed  Google Scholar 

  6. Noguchi Y, Tomizawa D, Hiroki H, Miyamoto S, Tezuka M, Miyawaki R, et al. Hematopoietic cell transplantation for myeloid/NK cell precursor acute leukemia in second remission. Clin Case Rep. 2018;6(6):1023–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuhrmann S, Schabath R, Möricke A, Zimmermann M, Kunz JB, Kulozik AE, et al. Expression of CD56 defines a distinct subgroup in childhood T-ALL with inferior outcome. Results of the ALL-BFM 2000 trial. Br J Haematol. 2018;183(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  9. Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol. 2006;27(4):169–75.

    Article  CAS  PubMed  Google Scholar 

  10. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008;452(7188):768–72.

    Article  CAS  PubMed  Google Scholar 

  11. Morimoto M, Kondoh K, Keino D, Ohyama R, Ban S, Kinoshita A, et al. A child with myeloid/natural killer cell precursor acute leukemia treated successfully with acute myeloid leukemia-oriented chemotherapy incorporating L-asparaginase. Leuk Res. 2010;34(12):1677–9.

    Article  PubMed  Google Scholar 

  12. Shiba N, Kanazawa T, Park MJ, Okuno H, Tamura K, Tsukada S, et al. NOTCH1 mutation in a female with myeloid/NK cell precursor acute leukemia. Pediatr Blood Cancer. 2010;55(7):1406–9.

    Article  PubMed  Google Scholar 

  13. Tezuka K, Nakayama H, Honda K, Suzumiya J, Oshima K, Kitoh T, et al. Treatment of a child with myeloid/NK cell precursor acute leukemia with L-asparaginase and unrelated cord blood transplantation. Int J Hematol. 2002;75(2):201–6.

    Article  PubMed  Google Scholar 

  14. Stahl M, Menghrajani K, Derkach A, Chan A, Xiao W, Glass J, et al. Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Adv. 2021;5(5):1552–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Unglaub JM, Schlenk RF, Hanoun M, Reinhardt HC, Middeke JM, Schäfer-Eckart K, et al. Venetoclax-azacitidine as salvage therapy and bridge to allogeneic cell transplantation in relapsed/refractory AML compared to historical data of the SAL registry study. Blood. 2021;138(Supplement 1):4418.

    Article  Google Scholar 

  16. Kuusanmäki H, Leppä AM, Pölönen P, Kontro M, Dufva O, Deb D, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105(3):708–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138(13):1120–36.

    Article  CAS  PubMed  Google Scholar 

  18. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discov. 2020;10(4):536–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4(9):1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peirs S, Matthijssens F, Goossens S, Van de Walle I, Ruggero K, de Bock CE, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014;124(25):3738–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Nakane.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiomi, I., Nakako, S., Nakane, T. et al. Effectiveness of venetoclax and azacytidine against myeloid/natural killer cell precursor acute leukemia. Int J Hematol 119, 88–92 (2024). https://doi.org/10.1007/s12185-023-03678-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03678-9

Keywords

Navigation