Skip to main content

Advertisement

Log in

CD30 stimulation induces multinucleation and chromosomal instability in HTLV-1-infected cell lines

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

A recent report indicated involvement of CD30 in progression of human leukemia virus type 1 (HTLV-1) infection, but the exact roles of CD30 in this process remain unclear. This study was conducted to determine the role of CD30 by stimulating CD30 expressed on HTLV-1-infected cell lines with CD30 ligand and observing its effects. CD30 stimulation increased multinucleated cells and inhibited proliferation of HTLV-1-infected cells. This inhibition was recovered by interruption of CD30 stimulation. Chromatin bridges found in multinucleated cells suggested DNA damage. CD30 stimulation triggered DNA double-strand breaks (DSBs) and chromosomal imbalances. CD30 stimulation induced reactive oxygen species (ROS), which induced DSBs. Generation of ROS and multinucleated cells by CD30 was dependent on phosphoinositide 3-kinase. RNA sequencing showed that CD30 stimulation produced significant changes in gene expression profiles, including upregulation of programmed death ligand 1 (PD-L1). Tax, which has also been shown to induce multinucleation and chromosomal instability, failed to induce CD30. These results suggest that induction of CD30, independent of Tax, triggers morphological abnormalities, chromosomal instability, and alteration of gene expression in HTLV-1-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27(3):453–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mohanty S, Harhaj EW. Mechanisms of oncogenesis by HTLV-1 tax. Pathogens. 2020;9(7):543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.

    Article  CAS  PubMed  Google Scholar 

  4. Ohtsuka E, Kikuchi H, Nasu M, Takita-Sonoda Y, Fujii H, Yokoyama S. Clinicopathological features of adult T-cell leukemia with CD30 antigen expression. Leuk Lymphoma. 1994;15(3–4):303–10.

    Article  CAS  PubMed  Google Scholar 

  5. Nakashima M, Yamochi T, Watanabe M, Uchimaru K, Utsunomiya A, Higashihara M, et al. CD30 characterizes polylobated lymphocytes and disease progression in HTLV-1-infected individuals. Clin Cancer Res. 2018;24(21):5445–57.

    Article  CAS  PubMed  Google Scholar 

  6. Oka S, Ono K, Nohgawa M. Successful treatment with brentuximab vedotin for relapsed and refractory adult T cell leukemia. Anticancer Drugs. 2020;31(5):536–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wright CW, Rumble JM, Duckett CS. CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J Biol Chem. 2007;282(14):10252–62.

    Article  CAS  PubMed  Google Scholar 

  8. Fukuda R, Hayashi A, Utsunomiya A, Nukada Y, Fukui R, Itoh K, et al. Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Proc Natl Acad Sci U S A. 2005;102(42):15213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watanabe M, Nakashima M, Togano T, Higashihara M, Watanabe T, Umezawa K, et al. Identification of the RelA domain responsible for action of a new NF-kappaB inhibitor DHMEQ. Biochem Biophys Res Commun. 2008;376(2):310–4.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of NF-kappaB components by covalent binding of (-)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem. 2008;51(18):5780–8.

    Article  CAS  PubMed  Google Scholar 

  11. Nakashima M, Watanabe M, Nakano K, Uchimaru K, Horie R. Differentiation of Hodgkin lymphoma cells by reactive oxygen species and regulation by heme oxygenase-1 through HIF-1alpha. Cancer Sci. 2021;112(6):2542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hosseini E, Ghasemzadeh M, Atashibarg M, Haghshenas M. ROS scavenger, N-acetyl-l-cysteine and NOX specific inhibitor, VAS2870 reduce platelets apoptosis while enhancing their viability during storage. Transfusion. 2019;59(4):1333–43.

    Article  CAS  PubMed  Google Scholar 

  13. Peng YW, Buller CL, Charpie JR. Impact of N-acetylcysteine on neonatal cardiomyocyte ischemia-reperfusion injury. Pediatr Res. 2011;70(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kong SK, Kim BS, Lim H, Kim HJ, Kim YS. Dissection of PD-L1 promoter reveals differential transcriptional regulation of PD-L1 in VHL mutant clear cell renal cell carcinoma. Lab Invest. 2022;102(4):352–62.

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Kawakita S, Li QH, Fukuhara S, Fujisawa J. Human T-cell leukemia virus type 1 Tax protein stimulates the interferon-responsive enhancer element via NF-kappaB activity. FEBS Lett. 2003;539(1–3):73–7.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe M, Ogawa Y, Ito K, Higashihara M, Kadin ME, Abraham LJ, et al. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells. Am J Pathol. 2003;163(2):633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y, et al. Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene. 2002;21(16):2493–503.

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe M, Sugawara A, Noguchi Y, Hirose T, Omura S, Sunazuka T, et al. Jietacins, azoxy natural products, as novel NF-kappaB inhibitors: discovery, synthesis, biological activity, and mode of action. Eur J Med Chem. 2019;178:636–47.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka Y, Yoshida A, Tozawa H, Shida H, Nyunoya H, Shimotohno K. Production of a recombinant human T-cell leukemia virus type-I trans-activator (tax1) antigen and its utilization for generation of monoclonal antibodies against various epitopes on the tax1 antigen. Int J Cancer. 1991;48(4):623–30.

    Article  CAS  PubMed  Google Scholar 

  20. Ganem NJ, Pellman D. Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol. 2012;199(6):871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pampalona J, Frias C, Genesca A, Tusell L. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet. 2012;8(4): e1002679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem. 2001;276(46):42728–36.

    Article  CAS  PubMed  Google Scholar 

  23. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25: 101084.

    Article  CAS  PubMed  Google Scholar 

  24. Yamagishi M. The role of epigenetics in T-cell lymphoma. Int J Hematol. 2022;116(6):828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity (Edinb). 2010;105(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  26. Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res. 2017;5(2):106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sibon D, Gabet AS, Zandecki M, Pinatel C, Thete J, Delfau-Larue MH, et al. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest. 2006;116(4):974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 2008;15(7):1153–62.

    Article  CAS  PubMed  Google Scholar 

  29. Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y, et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia. 2009;23(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  30. GolrokhMofrad M, TaghizadehMaleki D, Faghihloo E. The roles of programmed death ligand 1 in virus-associated cancers. Infect Genet Evol. 2020;84: 104368.

    Article  CAS  Google Scholar 

  31. Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, et al. Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature. 2016;534(7607):402–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by MEXT/JSPS KAKENHI grants to R.H. (17K08728 and 20K07379) and M.W. (19K07442). This work was also supported by grants from Kitasato University School of Allied Health Sciences (Grant-in-Aid for Research projects) to R.H. (Nos. 2021-1001 and 2022-1007) and M.W. (No 2022-1047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryouichi Horie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 54 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Hatsuse, H., Nagao, K. et al. CD30 stimulation induces multinucleation and chromosomal instability in HTLV-1-infected cell lines. Int J Hematol 118, 75–87 (2023). https://doi.org/10.1007/s12185-023-03583-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03583-1

Keywords

Navigation