Skip to main content

Advertisement

Log in

Pulmonary hypertension is associated with poor cardiovascular and hematologic outcomes in patients with myeloproliferative neoplasms and cardiovascular disease

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Cardiovascular events and hematologic progression to myelofibrosis or leukemia are leading causes of morbidity and mortality among patients with myeloproliferative neoplasms (MPN). Pulmonary hypertension (PH) is also associated with MPN and cardiovascular disease (CVD), though its prognostic significance in MPN is not well characterized. Our primary objective was to investigate the effect of PH, defined as right-ventricular systolic pressure (RVSP) ≥ 50 mmHg on echocardiogram or mean pulmonary artery pressure (mPAP) ≥ 20 on right heart catheterization, on cardiovascular and all-cause mortality and hematologic progression in patients with MPN and CVD (atrial fibrillation, heart failure hospitalization, and myocardial infarction after MPN diagnosis). Of the 197 patients included (86 ET, 80 PV, 31 PMF), 92 (47%) had PH and 98 (50%) were male. All-cause mortality (58 vs 37%, p = 0.004), cardiovascular death (35 vs 9%, p < 0.0001), and hematologic progression (23 vs 11%, p = 0.037) occurred more frequently in patients with PH. Multivariable competing-risk and proportional hazards regression showed that PH was associated with increased risk of all-cause death (adjusted hazard ratio [HR], 1.80, 95% CI 1.10–2.93), CV death (adjusted subdistribution HR 3.71, 95% CI 1.58–8.73), and hematologic progression (adjusted subdistribution HR 1.99, 95% CI 1.21–3.27).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available on request to corresponding author (GH).

Abbreviations

CVD:

Cardiovascular disease

ET:

Essential thrombocythemia

MF:

Myelofibrosis

MPN:

Myeloproliferative neoplasms

PAP:

Pulmonary artery pressure

PH:

Pulmonary hypertension

PV:

Polycythemia vera

References

  1. Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular disease in myeloproliferative neoplasms. JACC: CardioOncology. 2022;4(2):166–82.

    Google Scholar 

  2. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913.

    Article  CAS  Google Scholar 

  3. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society Of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46(4):903–75.

    Article  CAS  Google Scholar 

  4. Brabrand M, Hansen KN, Laursen CB, Larsen TS, Vestergaard H, Abildgaard N. Frequency and etiology of pulmonary hypertension in patients with myeloproliferative neoplasms. Eur J Haematol. 2019;102(3):227–34.

    Article  Google Scholar 

  5. Kim J, Krichevsky S, Xie L, Palumbo MC, Rodriguez-Diego S, Yum B, et al. Incremental utility of right ventricular dysfunction in patients with myeloproliferative neoplasm-associated pulmonary hypertension. J Am Soc Echocardiogr. 2019;32(12):1574–85.

    Article  Google Scholar 

  6. Ferrari A, Scandura J, Masciulli A, Krichevsky S, Gavazzi A, Barbui T. Prevalence and risk factors for pulmonary hypertension associated with chronic myeloproliferative neoplasms. Eur J Haematol. 2021;106(2):250–9.

    Article  Google Scholar 

  7. Pfeuffer-Jovic E, Weiner S, Wilkens H, Schmitt D, Frantz S, Held M. Impact of the new definition of pulmonary hypertension according to world symposium of pulmonary hypertension 2018 on diagnosis of post-capillary pulmonary hypertension. Int J Cardiol. 2021;335:105–10.

    Article  Google Scholar 

  8. Montani D, Girerd B, Jais X, Levy M, Amar D, Savale L, et al. Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Respir Med. 2017;5(2):125–34.

    Article  CAS  Google Scholar 

  9. Stempel JM, Gopalakrishnan A, Krishnamoorthy P, Lo KB, Mittal V, Moghbeli N, et al. Pulmonary arterial hypertension in hospitalized patients with polycythemia vera (from the National Inpatient Database). Am J Cardiol. 2021;143:154–7.

    Article  Google Scholar 

  10. Leiva O, Bhatt A, Jenkins A, Rosovsky R, Karp-Leaf R, Goodarzi K, et al. Abstract 10079: risk of cardiovascular and all-cause mortality in patients with myeloproliferative neoplasms following heart failure hospitalization. Circulation. 2021;144(Supp_1):A10079-A.

    Google Scholar 

  11. Singh I, Mikita G, Green D, Risquez C, Sanders A. Pulmonary extra-medullary hematopoiesis and pulmonary hypertension from underlying polycythemia vera: a case series. Pulm Circ. 2017;7(1):261–7.

    Article  Google Scholar 

  12. Tachibana T, Nakayama N, Matsumura A, Nakajima Y, Takahashi H, Miyazaki T, et al. Pulmonary hypertension associated with pulmonary veno-occlusive disease in patients with polycythemia vera. Intern Med. 2017;56(18):2487–92.

    Article  Google Scholar 

  13. Cortelezzi A, Gritti G, Del Papa N, Pasquini MC, Calori R, Gianelli U, et al. Pulmonary arterial hypertension in primary myelofibrosis is common and associated with an altered angiogenic status. Leukemia. 2008;22(3):646–9.

    Article  CAS  Google Scholar 

  14. Wu J, Zhang L, Vaze A, Lin S, Juhaeri J. Risk of Wernicke’s encephalopathy and cardiac disorders in patients with myeloproliferative neoplasm. Cancer Epidemiol. 2015;39(2):242–9.

    Article  Google Scholar 

  15. Massa M, Rosti V, Ramajoli I, Campanelli R, Pecci A, Viarengo G, et al. Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23(24):5688–95.

    Article  Google Scholar 

  16. Asosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J, Farver C, et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol. 2008;172(3):615–27.

    Article  CAS  Google Scholar 

  17. Farha S, Asosingh K, Xu W, Sharp J, George D, Comhair S, et al. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood. 2011;117(13):3485–93.

    Article  CAS  Google Scholar 

  18. Popat U, Frost A, Liu E, May R, Bag R, Reddy V, et al. New onset of myelofibrosis in association with pulmonary arterial hypertension. Ann Intern Med. 2005;143(6):466–7.

    Article  Google Scholar 

  19. Minakawa K, Yokokawa T, Ueda K, Nakajima O, Misaka T, Kimishima Y, et al. Myeloproliferative neoplasm-driving Calr frameshift promotes the development of pulmonary hypertension in mice. J Hematol Oncol. 2021;14(1):52.

    Article  CAS  Google Scholar 

  20. Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.

    Article  CAS  Google Scholar 

  21. Yeung AK, Villacorta-Martin C, Hon S, Rock JR, Murphy GJ. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv. 2020;4(24):6204–17.

    Article  CAS  Google Scholar 

  22. Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7(2): e525.

    Article  CAS  Google Scholar 

  23. Lung T, Galie N, Task Force for D, Treatment of Pulmonary Hypertension of European Society of C, European Respiratory S, International Society of H, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34(6):1219–63.

    Article  Google Scholar 

  24. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Glob Heart. 2012;7(4):275–95.

    Article  Google Scholar 

  25. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment. Leukemia. 2008;22(2):437–8.

    Article  CAS  Google Scholar 

  26. Jian Y, Zhou H, Wang Y, Zhang Z, Yang G, Geng C, et al. Echocardiography-defined pulmonary hypertension is an adverse prognostic factor for newly diagnosed multiple myeloma patients. Cancer Med. 2022. https://doi.org/10.1002/cam4.4770.

    Article  Google Scholar 

  27. Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, et al. Diagnosis of pulmonary hypertension. Eur Respir J. 2019;53(1):1801904.

    Article  CAS  Google Scholar 

  28. Karimi M, Borzouee M, Mehrabani A, Cohan N. Echocardiographic finding in beta-thalassemia intermedia and major: absence of pulmonary hypertension following hydroxyurea treatment in beta-thalassemia intermedia. Eur J Haematol. 2009;82(3):213–8.

    Article  CAS  Google Scholar 

  29. Amoozgar H, Farhani N, Khodadadi N, Karimi M, Cheriki S. Comparative study of pulmonary circulation and myocardial function in patients with beta-thalassemia intermedia with and without hydroxyurea, a case-control study. Eur J Haematol. 2011;87(1):61–7.

    Article  CAS  Google Scholar 

  30. Olnes M, Chi A, Haney C, May R, Minniti C, Jt T, et al. Improvement in hemolysis and pulmonary arterial systolic pressure in adult patients with sickle cell disease during treatment with hydroxyurea. Am J Hematol. 2009;84(8):530–2.

    Article  Google Scholar 

  31. Rumi E, Passamonti F, Boveri E, De Amici M, Astori C, Braschi M, et al. Dyspnea secondary to pulmonary hematopoiesis as presenting symptom of myelofibrosis with myeloid metaplasia. Am J Hematol. 2006;81(2):124–7.

    Article  Google Scholar 

  32. Chenou F, Hounkpe BW, Domingos IF, Tonasse WV, Batista THC, Santana RM, et al. Effect of hydroxyurea therapy on intravascular hemolysis and endothelial dysfunction markers in sickle cell anemia patients. Ann Hematol. 2021;100(11):2669–76.

    Article  CAS  Google Scholar 

  33. Santana SS, Pitanga TN, de Santana JM, Zanette DL, Vieira JJ, Yahouedehou S, et al. Hydroxyurea scavenges free radicals and induces the expression of antioxidant genes in human cell cultures treated with hemin. Front Immunol. 2020;11:1488.

    Article  CAS  Google Scholar 

  34. Tabarroki A, Lindner DJ, Visconte V, Zhang L, Rogers HJ, Parker Y, et al. Ruxolitinib leads to improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia. 2014;28(7):1486–93.

    Article  CAS  Google Scholar 

  35. Low AT, Howard L, Harrison C, Tulloh RM. Pulmonary arterial hypertension exacerbated by ruxolitinib. Haematologica. 2015;100(6):e244–5.

    Article  Google Scholar 

  36. Miller WL, Mahoney DW, Enriquez-Sarano M. Quantitative doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction: independent effect of pulmonary hypertension. Circ Cardiovasc Imaging. 2014;7(2):330–6.

    Article  CAS  Google Scholar 

  37. Patel N, Narasimhan B, Bandyopadhyay D, Amreia M, Chakraborty S, Hajra A, et al. Impact of pulmonary hypertension on in-hospital outcomes and 30-day readmissions following percutaneous coronary interventions. Mayo Clin Proc. 2021;96(8):2058–66.

    Article  Google Scholar 

  38. Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, et al. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood. 2012;120(6):1218–27.

    Article  CAS  Google Scholar 

  39. Roach EC, Park MM, Tang WH, Thomas JD, Asosingh K, Kalaycio M, et al. Impaired right ventricular-pulmonary vascular function in myeloproliferative neoplasms. J Heart Lung Transplant. 2015;34(3):390–4.

    Article  Google Scholar 

  40. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.

    Article  CAS  Google Scholar 

  41. Kimishima Y, Misaka T, Yokokawa T, Wada K, Ueda K, Sugimoto K, et al. Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat Commun. 2021;12(1):6177.

    Article  Google Scholar 

  42. Sano S, Wang Y, Yura Y, Sano M, Oshima K, Yang Y, et al. JAK2 (V617F) -mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl Sci. 2019;4(6):684–97.

    Article  Google Scholar 

  43. Khan NA, Ahuja KA, Wang X, Chaisson NF. Evaluation of hemodynamic parameters among patients with myeloproliferative neoplasms and suspected pulmonary hypertension. Leuk Lymphoma. 2021;62(6):1458–65.

    Article  CAS  Google Scholar 

  44. Farber HW, Foreman AJ, Miller DP, McGoon MD. REVEAL registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011;17(2):56–64.

    Article  Google Scholar 

Download references

Funding

Dr. Orly Leiva received the American Society of Hematology Minority Resident Hematology Award Program grant for this research. The funding body had no role in the design of the study, data collection, analysis and interpretation of the data, and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

OL, GH, and AB: conceived and planned the study. OL and AJ: performed chart review and data gathering. OL, SR, and DN: performed statistical analysis. OL, AB, RR, RKL, KG, and GH: wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gabriela Hobbs.

Ethics declarations

Conflict of interest

The authors have no relevant disclosures or conflict of interests.

Ethical approval and consent to participate

The study was approved by the Massachusetts General Hospital Institutional Review Board. Research was carried out in accordance with the Declaration of Helsinki. The requirement of informed consent was waived by the Institutional Review Board.

Consent for publication

It is not applicable given no personal identifiable patient information included in publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva, O., Ren, S., Neuberg, D. et al. Pulmonary hypertension is associated with poor cardiovascular and hematologic outcomes in patients with myeloproliferative neoplasms and cardiovascular disease. Int J Hematol 117, 90–99 (2023). https://doi.org/10.1007/s12185-022-03454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03454-1

Keywords

Navigation