Skip to main content

Advertisement

Log in

Myeloid leukemoid reaction after initial azacitidine therapy for chronic myelomonocytic leukemia

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The development of myeloid leukocytosis in leukemia patients during antileukemic treatment requires a differential diagnosis between myeloid leukemoid reaction and leukemia progression. We herein report the case of an 80-year-old Japanese man with chronic myelomonocytic leukemia (CMML) who developed marked myeloid leukocytosis (36.3 × 109/L) with 32.5% monocytes and 48% neutrophils about 4 weeks after the initial 5-azacitidine (AZA) treatment. The leukocytosis was unlikely to be attributed to infection and adverse drug reaction. As it resolved in a few days without any interventions, the transient myeloid leukocytosis was confirmed to be a myeloid leukemoid reaction. After four cycles of AZA treatment, leukemic blasts in the bone marrow decreased and the patient became transfusion-independent. Interestingly, levels of serum G-CSF showed a similar trend to the myeloid leukocytosis, while those of serum GM-CSF and IL-17 were undetectable throughout the clinical course, suggesting that a differentiation response to AZA treatment might lead to the myeloid leukemoid reaction. Our case implies that a marked but transient myeloid leukemoid reaction mimicking CMML progression can develop during AZA treatment, which requires careful clinical monitoring and differential diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Patnaik MM, Wassie EA, Lasho TL, Hanson CA, Ketterling R, Tefferi A. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. Am J Hematol. 2015;90(5):411–6.

    Article  PubMed  Google Scholar 

  2. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    Article  CAS  PubMed  Google Scholar 

  4. Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patnaik M, Parikh SA, Hanson CA, Tefferi A. Chronic myelomonocytic leukaemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165:273–86.

    Article  PubMed  Google Scholar 

  6. Benton CB, Nazha A, Pemmaraju N, Garcia-Manero G. Chronic myelomonocytic leukemia: forefront of the field in 2015. Crit Rev Oncol Hematol. 2015;95:222–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Porta MGD, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.

    Article  CAS  PubMed  Google Scholar 

  8. Breccia M, Latagliata R, Mengarelli A, Biondo F, Mandelli F, Alimena G. Prognostic factors in myelodysplastic and myeloproliferative types of chronic myelomonocytic leukemia: a retrospective analysis of 83 patients from a single institution. Haematologica. 2004;89:866–8.

    PubMed  Google Scholar 

  9. Nösslinger T, Reisner R, Grüner H, Tüchler H, Nowotny H, Pittermann E, et al. Dysplastic versus proliferative CMML—a retrospective analysis of 91 patients from a single institution. Leuk Res. 2001;25:741–7.

    Article  PubMed  Google Scholar 

  10. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    Article  CAS  PubMed  Google Scholar 

  11. Musto P, Maurillo L, Spagnoli A, Gozzini A, Rivellini F, Lunghi M, et al. Azacitidine for the treatment of lower risk myelodysplastic syndromes: a retrospective study of 74 patients enrolled in an Italian named patient program. Cancer. 2010;116(6):1485–94.

    Article  CAS  PubMed  Google Scholar 

  12. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol. 2018;93(6):824–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  15. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  16. Savona MR, Malcovati L, Komrokji R, Tiu VR, Mughal IT, Orazi A, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125(12):1857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feldmann G, Brossart P, von Lilienfeld-Toal M. Transient and fully reversible leukocytosis in a myelodysplastic syndrome patient upon initiation of azacitidine treatment. Ann Hematol. 2013;92(11):1577–9.

    Article  PubMed  Google Scholar 

  18. Selimoglu-Buet D, Wagner-Ballon O, Saada V, Bardet V, Itzykson R, Bencheikh L, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125:3618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fianchi L, Criscuolo M, Breccia M, Maurillo L, Salvi F, Musto P, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54(3):658–61.

    Article  CAS  PubMed  Google Scholar 

  20. Adès L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37(6):609–13.

    Article  PubMed  Google Scholar 

  21. Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kimura S, Kuramoto K, Homan J, Naruoka H, Ego T, Nogawa M, et al. Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM-1. Anticancer Res. 2012;32(3):795–8.

    CAS  PubMed  Google Scholar 

  23. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Curik N, Burda P, Vargova K, Pospisil V, Belickova M, Vlckova P, et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia. 2012;26(8):1804–11.

    Article  CAS  PubMed  Google Scholar 

  25. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood. 1996;88(4):1234–47.

    Article  CAS  PubMed  Google Scholar 

  26. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol. 1995;15(10):5830–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frikeche J, Clavert A, Delaunay J, Brissot E, Grégoire M, Gaugler B, et al. Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol. 2011;39(11):1056–63.

    Article  CAS  PubMed  Google Scholar 

  28. Stark MA, Huo Y, Burcin TL, Morris MA, Brissot E, Grégoire M, Gaugler B, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity. 2005;22(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  29. Liu CZ, Persad R, Inghirami G, Sen F, Amorosi E, Goldenberg A, Ibrahim S. Transient atypical monocytosis mimic acute myelomonocytic leukemia in post-chemotherapy patients receiving G-CSF: report of two cases. Clin Lab Haematol. 2004;26(5):359–62.

    Article  CAS  PubMed  Google Scholar 

  30. Ranaghan L, Drake M, Humphreys MW, Morris TC. Leukaemoid monocytosis in M4 AML following chemotherapy and G-CSF. Clin Lab Haematol. 1998;20(1):49–51.

    Article  CAS  PubMed  Google Scholar 

  31. Reykdal S, Sham R, Phatak P, Kouides P. Pseudoleukemia following the use of G-CSF. Am J Hematol. 1995;49(3):258–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tobiasson M, Dybedahl I, Holm MS, Karimi M, Brandefors L, Garelius H, et al. Limited clinical efficacy of azacitidine in transfusion-dependent, growth factor-resistant, low- and Int-1-risk MDS: results from the nordic NMDSG08A phase II trial. Blood Cancer J. 2014;4: e189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palomo L, Garcia O, Arnan M, Xicoy B, Fuster F, Cabezón M, et al. Targeted deep sequencing improves outcome stratification in chronic myelomonocytic leukemia with low risk cytogenetic features. Oncotarget. 2016;7(35):57021–35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sallman DA, Komrokji R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia. 2016;30(3):666–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Hironori Harada and Dr. Yuka Harada (Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital) for next-generation sequencing, and to Dr. Takahiko Hara (Tokyo Metropolitan Institute of Medical Science) for laboratory measurements of IL-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hagino.

Ethics declarations

Conflict of interest

None declared.

Patient consent for publication

Written informed consent was obtained from the patient for the publication of this case report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagino, T., Sato, T., Saga, R. et al. Myeloid leukemoid reaction after initial azacitidine therapy for chronic myelomonocytic leukemia. Int J Hematol 116, 961–965 (2022). https://doi.org/10.1007/s12185-022-03422-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03422-9

Keywords

Navigation