Skip to main content

Advertisement

Log in

Recent advances in hematopoietic cell transplantation for inherited bone marrow failure syndromes

  • Progress in Hematology
  • Current status and future perspectives of allogeneic hematopoietic cell transplantation for non-malignant diseases
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Inherited bone marrow failure syndromes (IBMFSs) are a group of rare genetic disorders characterized by bone marrow failure with unique phenotypes and predisposition to cancer. Classical IBMFSs primarily include Fanconi anemia with impaired DNA damage repair, dyskeratosis congenita with telomere maintenance dysfunction, and Diamond–Blackfan anemia with aberrant ribosomal protein biosynthesis. Recently, comprehensive genetic analyses have been implemented for the definitive diagnosis of classic IBMFSs, and advances in molecular genetics have led to the identification of novel disorders such as AMeD and MIRAGE syndromes. Allogeneic hematopoietic cell transplantation (HCT), a promising option to overcome impaired hematopoiesis in patients with IBMFSs, does not correct nonhematological defects and may enhance the risk of secondary malignancies. Disease-specific management is necessary because IBMFSs differ in underlying defects and are associated with varying degrees of risk for clonal evolution and early or late complications after HCT. In addition, long-term follow-up is essential to detect complications related to the IBMFS or HCT. This review provides a summary of current clinical practices along with the latest data on HCT in IBMFSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dokal I, Vulliamy T. Inherited bone marrow failure syndromes. Haematologica. 2010;95(8):1236–40. https://doi.org/10.3324/haematol.2010.025619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakaguchi H, Nakanishi K, Kojima S. Inherited bone marrow failure syndromes in 2012. Int J Hematol. 2013;97(1):20–9. https://doi.org/10.1007/s12185-012-1249-9.

    Article  PubMed  Google Scholar 

  3. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22. https://doi.org/10.1016/j.blre.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131(7):717–32. https://doi.org/10.1182/blood-2017-09-806489.

    Article  CAS  PubMed  Google Scholar 

  5. Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19(7):796–802. https://doi.org/10.1038/gim.2016.197.

    Article  CAS  PubMed  Google Scholar 

  6. Senda N, Kawaguchi-Sakita N, Kawashima M, Inagaki-Kawata Y, Yoshida K, Takada M, et al. Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population. Cancer Sci. 2021;112(8):3338–48. https://doi.org/10.1111/cas.14986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48(7):792–7. https://doi.org/10.1038/ng.3569.

    Article  CAS  PubMed  Google Scholar 

  8. Oka Y, Hamada M, Nakazawa Y, Muramatsu H, Okuno Y, Higasa K, et al. Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome. Sci Adv. 2020. https://doi.org/10.1126/sciadv.abd7197.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30–9. https://doi.org/10.3324/haematol.2017.178111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kahn JM, Brazauskas R, Tecca HR, Bo-Subait S, Buchbinder D, Battiwala M, et al. Subsequent neoplasms and late mortality in children undergoing allogeneic transplantation for nonmalignant diseases. Blood Adv. 2020;4(9):2084–94. https://doi.org/10.1182/bloodadvances.2019000839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garaycoechea JI, Patel KJ. Why does the bone marrow fail in Fanconi anemia? Blood. 2014;123(1):26–34. https://doi.org/10.1182/blood-2013-09-427740.

    Article  CAS  PubMed  Google Scholar 

  12. Shimada A, Takahashi Y, Muramatsu H, Hama A, Ismael O, Narita A, et al. Excellent outcome of allogeneic bone marrow transplantation for Fanconi anemia using fludarabine-based reduced-intensity conditioning regimen. Int J Hematol. 2012;95(6):675–9. https://doi.org/10.1007/s12185-012-1079-9.

    Article  PubMed  Google Scholar 

  13. Peffault de Latour R, Porcher R, Dalle JH, Aljurf M, Korthof ET, Svahn J, et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience. Blood. 2013;122(26):4279–86. https://doi.org/10.1182/blood-2013-01-479733.

    Article  CAS  PubMed  Google Scholar 

  14. MacMillan ML, DeFor TE, Young JA, Dusenbery KE, Blazar BR, Slungaard A, et al. Alternative donor hematopoietic cell transplantation for Fanconi anemia. Blood. 2015;125(24):3798–804. https://doi.org/10.1182/blood-2015-02-626002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ebens CL, DeFor TE, Tryon R, Wagner JE, MacMillan ML. Comparable outcomes after HLA-matched sibling and alternative donor hematopoietic cell transplantation for children with Fanconi anemia and severe aplastic anemia. Biol Blood Marrow Transplant. 2018;24(4):765–71. https://doi.org/10.1016/j.bbmt.2017.11.031.

    Article  PubMed  Google Scholar 

  16. Yabe M, Morio T, Tabuchi K, Tomizawa D, Hasegawa D, Ishida H, et al. Long-term outcome in patients with Fanconi anemia who received hematopoietic stem cell transplantation: a retrospective nationwide analysis. Int J Hematol. 2021;113(1):134–44. https://doi.org/10.1007/s12185-020-02991-x.

    Article  CAS  PubMed  Google Scholar 

  17. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8. https://doi.org/10.1056/NEJM198910263211707.

    Article  CAS  PubMed  Google Scholar 

  18. Gluckman E, Rocha V, Ionescu I, Bierings M, Harris RE, Wagner J, et al. Results of unrelated cord blood transplant in fanconi anemia patients: risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant. 2007;13(9):1073–82. https://doi.org/10.1016/j.bbmt.2007.05.015.

    Article  PubMed  Google Scholar 

  19. Zubicaray J, Pagliara D, Sevilla J, Eikema DJ, Bosman P, Ayas M, et al. Haplo-identical or mismatched unrelated donor hematopoietic cell transplantation for Fanconi anemia: results from the Severe Aplastic Anemia Working Party of the EBMT. Am J Hematol. 2021;96(5):571–9. https://doi.org/10.1002/ajh.26135.

    Article  CAS  PubMed  Google Scholar 

  20. Strocchio L, Pagliara D, Algeri M, Li Pira G, Rossi F, Bertaina V, et al. HLA-haploidentical TCRalphabeta+/CD19+-depleted stem cell transplantation in children and young adults with Fanconi anemia. Blood Adv. 2021;5(5):1333–9. https://doi.org/10.1182/bloodadvances.2020003707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshida N, Yabe M, Umeda K, Osone S, Koike T, Saito S, et al. Outcomes after cord blood transplantation for inherited bone marrow failure syndromes in Japan. Pediatr Blood Cancer. 2021;68(Suppl6): e29440. https://doi.org/10.1002/pbc.29440.

    Article  Google Scholar 

  22. Giardino S, de Latour RP, Aljurf M, Eikema DJ, Bosman P, Bertrand Y, et al. Outcome of patients with Fanconi anemia developing myelodysplasia and acute leukemia who received allogeneic hematopoietic stem cell transplantation: a retrospective analysis on behalf of EBMT group. Am J Hematol. 2020;95(7):809–16. https://doi.org/10.1002/ajh.25810.

    Article  CAS  PubMed  Google Scholar 

  23. Bernard F, Uppungunduri CRS, Meyer S, Cummins M, Patrick K, James B, et al. Excellent overall and chronic graft-versus-host-disease-free event-free survival in Fanconi anaemia patients undergoing matched related- and unrelated-donor bone marrow transplantation using alemtuzumab-Flu-Cy: the UK experience. Br J Haematol. 2021;193(4):804–13. https://doi.org/10.1111/bjh.17418.

    Article  CAS  PubMed  Google Scholar 

  24. Bonfim C, Ribeiro L, Nichele S, Bitencourt M, Loth G, Koliski A, et al. Long-term survival, organ function, and malignancy after hematopoietic stem cell transplantation for Fanconi anemia. Biol Blood Marrow Transplant. 2016;22(7):1257–63. https://doi.org/10.1016/j.bbmt.2016.03.007.

    Article  PubMed  Google Scholar 

  25. Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood. 2006;107(7):2680–5. https://doi.org/10.1182/blood-2005-07-2622.

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi H, Sakaguchi H, Yoshida K, Yabe M, Yabe H, Okuno Y, et al. Clinical and genetic features of dyskeratosis congenita, cryptic dyskeratosis congenita, and Hoyeraal–Hreidarsson syndrome in Japan. Int J Hematol. 2015;102(5):544–52. https://doi.org/10.1007/s12185-015-1861-6.

    Article  PubMed  Google Scholar 

  27. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematol Am Soc Hematol Educ Program. 2007. https://doi.org/10.1182/asheducation-2007.1.29.

    Article  Google Scholar 

  28. Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem. 2021;296: 100064. https://doi.org/10.1074/jbc.REV120.014017.

    Article  CAS  PubMed  Google Scholar 

  29. Fioredda F, Iacobelli S, Korthof ET, Knol C, van Biezen A, Bresters D, et al. Outcome of haematopoietic stem cell transplantation in dyskeratosis congenita. Br J Haematol. 2018;183(1):110–8. https://doi.org/10.1111/bjh.15495.

    Article  CAS  PubMed  Google Scholar 

  30. Bizzetto R, Bonfim C, Rocha V, Socie G, Locatelli F, Chan K, et al. Outcomes after related and unrelated umbilical cord blood transplantation for hereditary bone marrow failure syndromes other than Fanconi anemia. Haematologica. 2011;96(1):134–41. https://doi.org/10.3324/haematol.2010.027839.

    Article  PubMed  Google Scholar 

  31. Dietz AC, Orchard PJ, Baker KS, Giller RH, Savage SA, Alter BP, et al. Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita. Bone Marrow Transplant. 2011;46(1):98–104. https://doi.org/10.1038/bmt.2010.65.

    Article  CAS  PubMed  Google Scholar 

  32. Nishio N, Takahashi Y, Ohashi H, Doisaki S, Muramatsu H, Hama A, et al. Reduced-intensity conditioning for alternative donor hematopoietic stem cell transplantation in patients with dyskeratosis congenita. Pediatr Transplant. 2011;15(2):161–6. https://doi.org/10.1111/j.1399-3046.2010.01431.x.

    Article  CAS  PubMed  Google Scholar 

  33. Gadalla SM, Sales-Bonfim C, Carreras J, Alter BP, Antin JH, Ayas M, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with dyskeratosis congenita. Biol Blood Marrow Transplant. 2013;19(8):1238–43. https://doi.org/10.1016/j.bbmt.2013.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barbaro P, Vedi A. Survival after hematopoietic stem cell transplant in patients with dyskeratosis congenita: systematic review of the literature. Biol Blood Marrow Transplant. 2016;22(7):1152–8. https://doi.org/10.1016/j.bbmt.2016.03.001.

    Article  PubMed  Google Scholar 

  35. Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, et al. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood. 2009;114(11):2236–43. https://doi.org/10.1182/blood-2008-09-178871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kojima S, Ehlert K. Reconsidering the indication of haematopoietic stem cell transplantation for dyskeratosis congenita. Br J Haematol. 2018;183(1):11–2. https://doi.org/10.1111/bjh.15493.

    Article  PubMed  Google Scholar 

  37. Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, et al. Danazol treatment for telomere diseases. N Engl J Med. 2016;374(20):1922–31. https://doi.org/10.1056/NEJMoa1515319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mackintosh JA, Pietsch M, Lutzky V, Enever D, Bancroft S, Apte SH, et al. TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. BMJ Open Respir Res. 2021. https://doi.org/10.1136/bmjresp-2021-001127.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119(16):3815–9. https://doi.org/10.1182/blood-2011-08-375972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimura K, Shimazu K, Toki T, Misawa M, Fukuda K, Yoshida T, et al. Outcome of colorectal cancer in Diamond–Blackfan syndrome with a ribosomal protein S19 mutation. Clin J Gastroenterol. 2020;13(6):1173–7. https://doi.org/10.1007/s12328-020-01176-7.

    Article  PubMed  Google Scholar 

  41. Da Costa L, Leblanc T, Mohandas N. Diamond–Blackfan anemia. Blood. 2020;136(11):1262–73. https://doi.org/10.1182/blood.2019000947.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bartels M, Bierings M. How I manage children with Diamond–Blackfan anaemia. Br J Haematol. 2019;184(2):123–33. https://doi.org/10.1111/bjh.15701.

    Article  PubMed  Google Scholar 

  43. Fagioli F, Quarello P, Zecca M, Lanino E, Corti P, Favre C, et al. Haematopoietic stem cell transplantation for Diamond Blackfan anaemia: a report from the Italian Association of Paediatric Haematology and Oncology Registry. Br J Haematol. 2014;165(5):673–81. https://doi.org/10.1111/bjh.12787.

    Article  PubMed  Google Scholar 

  44. Strahm B, Loewecke F, Niemeyer CM, Albert M, Ansari M, Bader P, et al. Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond–Blackfan anemia. Blood Adv. 2020;4(8):1760–9. https://doi.org/10.1182/bloodadvances.2019001210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koyamaishi S, Kamio T, Kobayashi A, Sato T, Kudo K, Sasaki S, et al. Reduced-intensity conditioning is effective for hematopoietic stem cell transplantation in young pediatric patients with Diamond–Blackfan anemia. Bone Marrow Transplant. 2021;56(5):1013–20. https://doi.org/10.1038/s41409-020-01056-1.

    Article  PubMed  Google Scholar 

  46. Miano M, Eikema DJ, de la Fuente J, Bosman P, Ghavamzadeh A, Smiers F, et al. Stem cell transplantation for Diamond–Blackfan anemia. A retrospective study on behalf of the severe aplastic anemia working party of the European Blood and Marrow Transplantation Group (EBMT). Transplant Cell Ther. 2021;27(3):274 e1-e5. https://doi.org/10.1016/j.jtct.2020.12.024.

    Article  Google Scholar 

  47. Xia J, Bolyard AA, Rodger E, Stein S, Aprikyan AA, Dale DC, et al. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol. 2009;147(4):535–42. https://doi.org/10.1111/j.1365-2141.2009.07888.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosenberg PS, Zeidler C, Bolyard AA, Alter BP, Bonilla MA, Boxer LA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol. 2010;150(2):196–9. https://doi.org/10.1111/j.1365-2141.2010.08216.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donadieu J, Leblanc T, Bader Meunier B, Barkaoui M, Fenneteau O, Bertrand Y, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica. 2005;90(1):45–53.

    PubMed  Google Scholar 

  50. Rotulo GA, Beaupain B, Rialland F, Paillard C, Nachit O, Galambrun C, et al. HSCT may lower leukemia risk in ELANE neutropenia: a before-after study from the French Severe Congenital Neutropenia Registry. Bone Marrow Transplant. 2020;55(8):1614–22. https://doi.org/10.1038/s41409-020-0800-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fioredda F, Iacobelli S, van Biezen A, Gaspar B, Ancliff P, Donadieu J, et al. Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood. 2015;126(16):1885–92. https://doi.org/10.1182/blood-2015-02-628859.

    Article  CAS  PubMed  Google Scholar 

  52. Myers KC, Furutani E, Weller E, Siegele B, Galvin A, Arsenault V, et al. Clinical features and outcomes of patients with Shwachman–Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol. 2020;7(3):e238–46. https://doi.org/10.1016/S2352-3026(19)30206-6.

    Article  PubMed  Google Scholar 

  53. Cesaro S, Pegoraro A, Sainati L, Lucidi V, Montemitro E, Corti P, et al. A prospective study of hematologic complications and long-term survival of Italian patients affected by Shwachman–Diamond syndrome. J Pediatr. 2020;219(196–201): e1. https://doi.org/10.1016/j.jpeds.2019.12.041.

    Article  CAS  Google Scholar 

  54. Myers KC, Bolyard AA, Otto B, Wong TE, Jones AT, Harris RE, et al. Variable clinical presentation of Shwachman–Diamond syndrome: update from the North American Shwachman-Diamond Syndrome Registry. J Pediatr. 2014;164(4):866–70. https://doi.org/10.1016/j.jpeds.2013.11.039.

    Article  PubMed  Google Scholar 

  55. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nat Genet. 2003;33(1):97–101. https://doi.org/10.1038/ng1062.

    Article  CAS  PubMed  Google Scholar 

  56. Cesaro S, Pillon M, Sauer M, Smiers F, Faraci M, de Heredia CD, et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman–Diamond syndrome: a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation (SAAWP-EBMT). Bone Marrow Transplant. 2020;55(9):1796–809. https://doi.org/10.1038/s41409-020-0863-z.

    Article  CAS  PubMed  Google Scholar 

  57. Myers K, Hebert K, Antin J, Boulad F, Burroughs L, Hofmann I, et al. Hematopoietic stem cell transplantation for Shwachman–Diamond syndrome. Biol Blood Marrow Transplant. 2020;26(8):1446–51. https://doi.org/10.1016/j.bbmt.2020.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol. 2005;131(5):636–44. https://doi.org/10.1111/j.1365-2141.2005.05819.x.

    Article  PubMed  Google Scholar 

  59. Savoia A, Dufour C, Locatelli F, Noris P, Ambaglio C, Rosti V, et al. Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations. Haematologica. 2007;92(9):1186–93. https://doi.org/10.3324/haematol.11425.

    Article  CAS  PubMed  Google Scholar 

  60. Dalle J-H, Fahd M. Allogenic stem cell transplantation in amegacaryocytosis: results of a retrospective study in EBMT centers. Biol Blood Marrow Transplant. 2014;20(2):S81–2. https://doi.org/10.1016/j.bbmt.2013.12.099.

    Article  Google Scholar 

  61. Cancio M, Hebert K, Kim S, Aljurf M, Olson T, Anderson E, et al. Outcomes in hematopoietic stem cell transplantation for congenital amegakaryocytic thrombocytopenia. Transplant Cell Ther. 2022;28(2):101 e1-e6. https://doi.org/10.1016/j.jtct.2021.10.009.

    Article  CAS  Google Scholar 

  62. Inaba T, Honda H, Matsui H. The enigma of monosomy 7. Blood. 2018;131(26):2891–8. https://doi.org/10.1182/blood-2017-12-822262.

    Article  CAS  PubMed  Google Scholar 

  63. Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021;27(10):1806–17. https://doi.org/10.1038/s41591-021-01511-6.

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8(1):1557. https://doi.org/10.1038/s41467-017-01590-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmed IA, Farooqi MS, Vander Lugt MT, Boklan J, Rose M, Friehling ED, et al. Outcomes of hematopoietic cell transplantation in patients with germline SAMD9/SAMD9L mutations. Biol Blood Marrow Transplant. 2019;25(11):2186–96. https://doi.org/10.1016/j.bbmt.2019.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarthy J, Zha J, Babushok D, Shenoy A, Fan JM, Wertheim G, et al. Poor outcome with hematopoietic stem cell transplantation for bone marrow failure and MDS with severe MIRAGE syndrome phenotype. Blood Adv. 2018;2(2):120–5. https://doi.org/10.1182/bloodadvances.2017012682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants for Project Promoting Clinical Trials for Development of New Drugs from the Japan Agency for Medical Research and Development (22lk0201152) and grants from the National Center for Child Health and Development (2020A-1). The authors would like to thank Dr. Asahito Hama for providing bone marrow images.

Author information

Authors and Affiliations

Authors

Contributions

HS and NY wrote and approved the review article.

Corresponding author

Correspondence to Nao Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, H., Yoshida, N. Recent advances in hematopoietic cell transplantation for inherited bone marrow failure syndromes. Int J Hematol 116, 16–27 (2022). https://doi.org/10.1007/s12185-022-03362-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03362-4

Keywords

Navigation