Skip to main content

Advertisement

Log in

UBC9 inhibits myeloid differentiation in collaboration with AML1-MTG8

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The chimeric oncogene AML1-MTG8 (RUNX1-RUNX1T1) is generated in t(8;21) acute myeloid leukemia (AML). Here, we report a novel interaction of MTG8/RUNX1T1/ETO with UBC9/UBE2I. AML1-MTG8 protein also interacted with UBC9, suggesting a role in leukemogenesis. Overexpression of UBC9 in Kasumi-1 attenuated myeloid differentiation induced by all-trans retinoic acid, G-CSF, and GM-CSF (AGGM), which was judged by suppression of CD11b. In addition, the UBC9 inhibitor 2-D08 accelerated myeloid differentiation induced by AGGM in two t(8;21) AML cell lines, Kasumi-1 and SKNO-1. These data suggest that UBC9 may play a role in leukemogenesis in t(8;21) AML by working with AML1-MTG8 to suppress myeloid differentiation. Therefore, UBC9 may be a good target for new differentiation therapy against t(8;21) AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Look AT. Oncogenic transcription factors in the human acute leukemias. Science. 1997;278(5340):1059–64.

    Article  CAS  PubMed  Google Scholar 

  2. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80(7):1825–31.

    Article  CAS  PubMed  Google Scholar 

  3. Nisson PE, Watkins PC, Sacchi N. Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet Cytogenet. 1992;63(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  4. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. Embo J. 1993;12(7):2715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, et al. Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood. 1993;82(4):1270–6.

    Article  CAS  PubMed  Google Scholar 

  6. Klein K, Kaspers G, Harrison CJ, Beverloo HB, Reedijk A, Bongers M, et al. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the international Berlin-Frankfurt-Münster study group. J Clin Oncol. 2015;33(36):4247–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fracchiolla NS, Colombo G, Finelli P, Maiolo AT, Neri A. EHT, a new member of the MTG8/ETO gene family, maps on 20q11 region and is deleted in acute myeloid leukemias. Blood. 1998;92(9):3481–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol. 1998;18(2):846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood. 1998;91(11):4028–37.

    Article  CAS  PubMed  Google Scholar 

  11. Davis JN, Williams BJ, Herron JT, Galiano FJ, Meyers S. ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene. 1999;18(6):1375–83.

    Article  CAS  PubMed  Google Scholar 

  12. Feinstein PG, Kornfeld K, Hogness DS, Mann RS. Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics. 1995;140(2):573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D, et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell. 2006;9(4):249–60.

    Article  PubMed  CAS  Google Scholar 

  14. Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, et al. MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene. 2001;20(43):6225–32.

    Article  CAS  PubMed  Google Scholar 

  15. Schillace RV, Andrews SF, Liberty GA, Davey MP, Carr DW. Identification and characterization of myeloid translocation gene 16b as a novel a kinase anchoring protein in T lymphocytes. J Immunol. 2002;168(4):1590–9.

    Article  CAS  PubMed  Google Scholar 

  16. Corpora T, Roudaia L, Oo ZM, Chen W, Manuylova E, Cai X, et al. Structure of the AML1-ETO NHR3-PKA(RIIα) complex and its contribution to AML1-ETO activity. J Mol Biol. 2010;402(3):560–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A. 1998;95(18):10860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol. 1998;18(12):7176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998;18(12):7185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ, et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol. 2000;20(6):2075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossetti S, van Unen L, Sacchi N, Hoogeveen AT. Novel RNA-binding properties of the MTG chromatin regulatory proteins. BMC Mol Biol. 2008;9:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ahn EY, Yan M, Malakhova OA, Lo MC, Boyapati A, Ommen HB, et al. Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc Natl Acad Sci U S A. 2008;105(44):17103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grinev VV, Barneh F, Ilyushonak IM, Nakjang S, Smink J, van Oort A, et al. RUNX1/RUNX1T1 mediates alternative splicing and reorganises the transcriptional landscape in leukemia. Nat Commun. 2021;12(1):520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Komori A, Sueoka E, Fujiki H, Ishii M, Kozu T. Association of MTG8 (ETO/CDR), a leukemia-related protein, with serine/threonine protein kinases and heat shock protein HSP90 in human hematopoietic cell lines. Jpn J Cancer Res. 1999;90(1):60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31(11):1007–14.

    Article  CAS  PubMed  Google Scholar 

  26. Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun. 2021;12(1):1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A. Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood. 2005;105(1):341–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kim YS, Keyser SGL, Schneekloth JS Jr. Synthesis of 2’,3’,4’-trihydroxyflavone (2–D08), an inhibitor of protein sumoylation. Bioorg Med Chem Lett. 2014;24(4):1094–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–30.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A. 1996;93(8):3444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75.

    Article  CAS  PubMed  Google Scholar 

  32. Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004;23(24):4284–96.

    Article  CAS  PubMed  Google Scholar 

  33. Lindberg SR, Olsson A, Persson AM, Olsson I. The Leukemia-associated ETO homologues are differently expressed during hematopoietic differentiation. Exp Hematol. 2005;33(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  34. Chyla BJ, Moreno-Miralles I, Steapleton MA, Thompson MA, Bhaskara S, Engel M, et al. Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol. 2008;28(20):6234–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Calabi F, Pannell R, Pavloska G. Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol. 2001;21(16):5658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amann JM, Chyla BJ, Ellis TC, Martinez A, Moore AC, Franklin JL, et al. Mtgr1 is a transcriptional corepressor that is required for maintenance of the secretory cell lineage in the small intestine. Mol Cell Biol. 2005;25(21):9576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rejeski K, Duque-Afonso J, Lübbert M. AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms. Oncogene. 2021;40(38):5665–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012;6(3):248–62.

    Article  PubMed  Google Scholar 

  39. Abdallah MG, Niibori-Nambu A, Morii M, Yokomizo T, Yokomizo T, Ideue T, et al. RUNX1-ETO (RUNX1-RUNX1T1) induces myeloid leukemia in mice in an age-dependent manner. Leukemia. 2021;35(10):2983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, et al. The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet. 2016;48(12):1551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossetti S, Van Unen L, Touw IP, Hoogeveen AT, Sacchi N. Myeloid maturation block by AML1-MTG16 is associated with Csf1r epigenetic downregulation. Oncogene. 2005;24(34):5325–32.

    Article  CAS  PubMed  Google Scholar 

  42. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, et al. Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell. 2008;31(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  43. Baik H, Boulanger M, Hosseini M, Kowalczyk J, Zaghdoudi S, Salem T, et al. Targeting the SUMO pathway primes all-trans retinoic acid-induced differentiation of nonpromyelocytic acute myeloid leukemias. Cancer Res. 2018;78(10):2601–13.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou P, Chen X, Li M, Tan J, Zhang Y, Yuan W, et al. 2–D08 as a SUMOylation inhibitor induced ROS accumulation mediates apoptosis of acute myeloid leukemia cells possibly through the deSUMOylation of NOX2. Biochem Biophys Res Commun. 2019;513(4):1063–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Huang FF, Wu DS, Li WJ, Zhan HE, Peng MY, et al. SUMOylation of insulin-like growth factor 1 receptor, promotes proliferation in acute myeloid leukemia. Cancer Lett. 2015;357(1):297–306.

    Article  CAS  PubMed  Google Scholar 

  46. Geletu M, Balkhi MY, Peer Zada AA, Christopeit M, Pulikkan JA, Trivedi AK, et al. Target proteins of C/EBPαp30 in AML: C/EBPαp30 enhances sumoylation of C/EBPαp42 via up-regulation of Ubc9. Blood. 2007;110(9):3301–9.

    Article  CAS  PubMed  Google Scholar 

  47. Langston SP, Grossman S, England D, Afroze R, Bence N, Bowman D, et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J Med Chem. 2021;64(5):2501–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank technical help and valuable advice from all the laboratory members and FACS Core Laboratory at the Institute of Medical Science, the University of Tokyo. This work was supported in part by Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI Grant numbers JP16K09841, JP20K08706 to TF) and Grant from Children’s Cancer Association of Japan (to TF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomofusa Fukuyama.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuyama, T., Kitamura, T. & Kozu, T. UBC9 inhibits myeloid differentiation in collaboration with AML1-MTG8. Int J Hematol 115, 686–693 (2022). https://doi.org/10.1007/s12185-022-03303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03303-1

Keywords

Navigation