Skip to main content
Log in

Transcriptomic analysis of functional diversity of human umbilical cord blood hematopoietic stem/progenitor cells in erythroid differentiation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSC) give rise to all types of blood lineages, including red blood cells (RBC). Hematopoietic stem/progenitor cells (HSPC) are known to be functionally diverse in terms of their self-renewal potential and lineage output. Consequently, investigation of molecular heterogeneity in the differentiation potential of HSPC is vital to identify novel regulators that affect generation of specific cell types, especially RBC. Here, we compared the erythroid potential of CD34+ hematopoietic stem and progenitor cells from 50 different umbilical cord blood (UCB) donors and discovered that those donors gave rise to diverse frequencies of Glycophorin-A+ erythroid cells after in vitro differentiation, despite having similar frequencies of phenotypic HSC initially. RNA sequencing revealed that genes involved in G protein-coupled receptor (GPCR) signaling were significantly up-regulated in the high-erythroid output donors. When we chemically modified two main signaling elements in this pathway, adenylyl cyclase (AC) and phosphodiesterase (PDE), we observed that inhibition of PDE led to 10 times higher yield of Glycophorin-A+ cells than activation of AC. Our findings suggest that GPCR signaling, and particularly the cAMP-related pathway, contributes to the diversity of erythroid potential among UCB donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118:6258–68.

    Article  CAS  Google Scholar 

  2. Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. Br J Haematol. 2016;173:206–18.

    Article  CAS  Google Scholar 

  3. Cairo MS, Wagner EL, Fraser J, Cohen G, van de Ven C, Carter SL, et al. Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a Cord Blood Transplantation (COBLT) Study report. Transfusion. 2005;45:856–66.

    Article  Google Scholar 

  4. Sudo K, Yasuda J, Nakamura Y. Gene expression profiles of cryopreserved CD34+ human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts. Biochem Biophys Res Commun. 2010;397:697–705.

    Article  CAS  Google Scholar 

  5. Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol. 2006;24:1255–6.

    Article  CAS  Google Scholar 

  6. Soboleva S, Kurita R, Kajitani N, Åkerstrand H, Miharada K. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system. Hum Cell. 2022;35:408–17.

    Article  CAS  Google Scholar 

  7. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011;333:218–22.

    Article  CAS  Google Scholar 

  8. Ting SB, Deneault E, Hope K, Cellot S, Chagraoui J, Mayotte N, et al. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood. 2012;119:2510–22.

    Article  CAS  Google Scholar 

  9. Zhang M, Zhu X, Zhang Y, Cai Y, Chen J, Sivaprakasam S, et al. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ. 2015;22:1922–34.

    Article  CAS  Google Scholar 

  10. Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol. 2004;5:959–70.

    Article  CAS  Google Scholar 

  11. Han B, Poppinga WJ, Schmidt M. Scaffolding during the cell cycle by A-kinase anchoring proteins. Pflugers Arch Eur J Physiol. 2015;467:2401–11.

    Article  CAS  Google Scholar 

  12. Chen L, Terrenoire C, Kass RS. KCNQ1/KCNE1 macromolecular signaling complex: channel microdomains and human disease. Cardiac electrophysiology: from cell to bedside. 6th ed.; 2013. p. 115–20.

  13. Dessauer CW. Adenylyl cyclase-A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol. 2009;76:935–41.

    Article  CAS  Google Scholar 

  14. Boer AK, Drayer AL, Vellenga E. cAMP/PKA-mediated regulation of erythropoiesis. Leuk Lymphoma. 2003;44:1893–901.

    Article  CAS  Google Scholar 

  15. Hassan A, Bagu ET, Levesque M, Patten SA, Benhadjeba S, Edjekouane L, et al. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open. 2019;8:bio037390.

  16. Dores MR, Lin H, Grimsey NJ, Mendez F, Trejo J. The α-Arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting. Mol Biol Cell. 2015;26:4660–73.

    Article  CAS  Google Scholar 

  17. Bendzunas NG, Dörfler S, Autenrieth K, Bertinetti D, Machal EMF, Kennedy EJ, et al. Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorg Med Chem. 2018;26:1174–8.

    Article  CAS  Google Scholar 

  18. Saxena S, Rönn RE, Guibentif C, Moraghebi R, Woods NB. Cyclic AMP signaling through Epac axis modulates human hemogenic endothelium and enhances hematopoietic cell generation. Stem Cell Rep. 2016;6:692–703.

    Article  CAS  Google Scholar 

  19. D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Zendoli F, Carotenuto M. Human umbilical cord blood: immunophenotypic heterogeneity of CD34+ hematopoietic progenitor cells. Haematologica. 1996;81:404–9.

    CAS  PubMed  Google Scholar 

  20. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16:712–24.

    Article  CAS  Google Scholar 

  21. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173:1535–48.

    Article  CAS  Google Scholar 

  22. Richard A, Vallin E, Romestaing C, Roussel D, Gandrillon O, Gonin-Giraud S. Erythroid differentiation displays a peak of energy consumption concomitant with glycolytic metabolism rearrangements. PLoS One. 2019;14:e0221472.

  23. Guillard C, Chrétien S, Jockers R, Fichelson S, Mayeux P, Duprez V. Coupling of heterotrimeric Gi proteins to the erythropoietin receptor. J Biol Chem. 2001;276:2007–14.

    Article  CAS  Google Scholar 

  24. Kotaki R, Kawashima M, Yamaguchi A, Suzuki N, Koyama-Nasu R, Ogiya D, et al. Overexpression of miR-669m inhibits erythroblast differentiation. Sci Rep. 2020;10:13554.

    Article  CAS  Google Scholar 

  25. Chung J, Wittig JG, Ghamari A, Maeda M, Dailey TA, Bergonia H, et al. Erythropoietin signaling regulates heme biosynthesis. Elife. 2017;6:e24767.

Download references

Acknowledgements

We thank Mark van der Garde for technical supports. This work was supported by the Swedish Research Council (No. 2018-02738) (K.M.), the Swedish Cancer Society (No. 19 0243 Pj) (K.M.). K.M. was funded by StemTherapy program at Lund University. The Lund Stem Cell Center was supported by a Center of Excellence grant in life sciences from the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Contributions

KM designed the project. SS and KM planned experiments. SS performed experiments. SS, HÅ and KM analyzed the data. SS and KM wrote the manuscript.

Corresponding author

Correspondence to Kenichi Miharada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, S., Åkerstrand, H. & Miharada, K. Transcriptomic analysis of functional diversity of human umbilical cord blood hematopoietic stem/progenitor cells in erythroid differentiation. Int J Hematol 115, 481–488 (2022). https://doi.org/10.1007/s12185-022-03292-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03292-1

Keywords

Navigation