Skip to main content
Log in

Downregulation of HLA class II is associated with relapse after allogeneic stem cell transplantation and alters recognition by antigen-specific T cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Genomic deletion of donor–patient-mismatched HLA alleles in leukemic cells is a major cause of relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Mismatched HLA is frequently lost as an individual allele or a whole region in HLA-class I, however, it is downregulated in HLA-class II. We hypothesized that there might be a difference in T cell recognition capacity against epitopes associated with HLA-class I and HLA-class II and consequently such allogeneic immune pressure induced HLA alterations in leukemic cells. To investigate this, we conducted in vitro experiments with T cell receptor-transduced T (TCR-T) cells. The cytotoxic activity of NY-ESO-1-specific TCR-T cells exhibited similarly against K562 cells with low HLA-A*02:01 expression. However, we demonstrated that the cytokine production against low HLA-DPB1*05:01 expression line decreased gradually from the HLA expression level approximately 2-log lower than normal expressors. Using sort-purified leukemia cells before and after HSCT, we applied the next-generation sequencing, and revealed that there were several marked downregulations of HLA-class II alleles which demonstrated consistently low expression from pre-transplantation. The marked downregulation of HLA-class II may lead to decreased antigen recognition ability of antigen-specific T cells and may be one of immune evasion mechanism associated with HLA-class II downregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barrett AJ, Battiwalla M. Relapse after allogeneic stem cell transplantation. Expert Rev Hematol. 2010;3(4):429–41. https://doi.org/10.1586/ehm.10.32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363(22):2091–101. https://doi.org/10.1056/NEJMoa1004383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takami A. Hematopoietic stem cell transplantation for acute myeloid leukemia. Int J Hematol. 2018;107(5):513–8. https://doi.org/10.1007/s12185-018-2412-8.

    Article  PubMed  Google Scholar 

  4. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009;361(5):478–88. https://doi.org/10.1056/NEJMoa0811036.

    Article  CAS  PubMed  Google Scholar 

  5. Crucitti L, Crocchiolo R, Toffalori C, Mazzi B, Greco R, Signori A, et al. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia. 2015;29(5):1143–52. https://doi.org/10.1038/leu.2014.314.

    Article  CAS  PubMed  Google Scholar 

  6. Jan M, Leventhal MJ, Morgan EA, Wengrod JC, Nag A, Drinan SD, et al. Recurrent genetic HLA loss in AML relapsed after matched unrelated allogeneic hematopoietic cell transplantation. Blood Adv. 2019;3(14):2199–204. https://doi.org/10.1182/bloodadvances.2019000445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato T, Terakura S, Murata M, Sugimoto K, Murase M, Iriyama C, et al. Escape of leukemia blasts from HLA-specific CTL pressure in a recipient of HLA one locus-mismatched bone marrow transplantation. Cell Immunol. 2012;276(1–2):75–82. https://doi.org/10.1016/j.cellimm.2012.03.011.

    Article  CAS  PubMed  Google Scholar 

  8. Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L. Mechanisms of leukemia immune evasion and their role in relapse after haploidentical hematopoietic cell transplantation. Front Immunol. 2020;11:147. https://doi.org/10.3389/fimmu.2020.00147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shyr DC, Zhang BM, Saini G, Madani ND, Schultz LM, Patel S, et al. HLA-haplotype loss after TCRαβ/CD19-depleted haploidentical HSCT. Bone Marrow Transplant. 2021;56(3):733–7. https://doi.org/10.1038/s41409-020-01081-0.

    Article  CAS  PubMed  Google Scholar 

  10. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379(24):2330–41. https://doi.org/10.1056/NEJMoa1808777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25(4):603–11. https://doi.org/10.1038/s41591-019-0400-z.

    Article  CAS  PubMed  Google Scholar 

  12. Hutten TJA, Norde WJ, Woestenenk R, Wang RC, Maas F, Kester M, et al. Increased coexpression of PD-1, TIGIT, and KLRG-1 on tumor-reactive CD8(+) T cells during relapse after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(4):666–77. https://doi.org/10.1016/j.bbmt.2017.11.027.

    Article  CAS  PubMed  Google Scholar 

  13. Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5(3):316–31. https://doi.org/10.1158/2159-8290.Cd-14-0736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waterhouse M, Pfeifer D, Pantic M, Emmerich F, Bertz H, Finke J. Genome-wide profiling in AML patients relapsing after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(10):1450-9.e1. https://doi.org/10.1016/j.bbmt.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

  15. Middeke JM, Herold S, Rücker-Braun E, Berdel WE, Stelljes M, Kaufmann M, et al. TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2016;172(6):914–22. https://doi.org/10.1111/bjh.13912.

    Article  CAS  PubMed  Google Scholar 

  16. Toffalori C, Cavattoni I, Deola S, Mastaglio S, Giglio F, Mazzi B, et al. Genomic loss of patient-specific HLA in acute myeloid leukemia relapse after well-matched unrelated donor HSCT. Blood. 2012;119(20):4813–5. https://doi.org/10.1182/blood-2012-02-411686.

    Article  CAS  PubMed  Google Scholar 

  17. Vago L, Toffalori C, Ciceri F, Fleischhauer K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol. 2012;39(6):707–15. https://doi.org/10.1053/j.seminoncol.2012.09.009.

    Article  PubMed  Google Scholar 

  18. Sakai T, Terakura S, Miyao K, Okuno S, Adachi Y, Umemura K, et al. Artificial T cell adaptor molecule-transduced TCR-T cells demonstrated improved proliferation only when transduced in a higher intensity. Mol Ther Oncolytics. 2020;18:613–22. https://doi.org/10.1016/j.omto.2020.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyao K, Terakura S, Okuno S, Julamanee J, Watanabe K, Hamana H, et al. Introduction of genetically modified CD3ζ improves proliferation and persistence of antigen-specific CTLs. Cancer Immunol Res. 2018;6(6):733–44. https://doi.org/10.1158/2326-6066.Cir-17-0538.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 2007;67(8):3898–903. https://doi.org/10.1158/0008-5472.can-06-3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, et al. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol. 2008;180(9):6116–31.

    Article  CAS  Google Scholar 

  22. Kusano S, Kukimoto-Niino M, Satta Y, Ohsawa N, Uchikubo-Kamo T, Wakiyama M, et al. Structural basis for the specific recognition of the major antigenic peptide from the Japanese cedar pollen allergen Cry j 1 by HLA-DP5. J Mol Biol. 2014;426(17):3016–27. https://doi.org/10.1016/j.jmb.2014.06.020.

    Article  CAS  PubMed  Google Scholar 

  23. Hori T, Kamikawaji N, Kimura A, Sone T, Komiyama N, Komiyama S, et al. Japanese cedar pollinosis and HLA-DP5. Tissue Antigens. 1996;47(6):485–91. https://doi.org/10.1111/j.1399-0039.1996.tb02590.x.

    Article  CAS  PubMed  Google Scholar 

  24. Shiina T, Suzuki S, Ozaki Y, Taira H, Kikkawa E, Shigenari A, et al. Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens. 2012;80(4):305–16. https://doi.org/10.1111/j.1399-0039.2012.01941.x.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto F, Suzuki S, Mizutani A, Shigenari A, Ito S, Kametani Y, et al. Capturing differential allele-level expression and genotypes of all classical HLA loci and haplotypes by a new capture RNA-seq method. Front Immunol. 2020;11:941. https://doi.org/10.3389/fimmu.2020.00941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. González PA, Carreño LJ, Coombs D, Mora JE, Palmieri E, Goldstein B, et al. T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc Natl Acad Sci U S A. 2005;102(13):4824–9. https://doi.org/10.1073/pnas.0500922102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Purbhoo MA, Sutton DH, Brewer JE, Mullings RE, Hill ME, Mahon TM, et al. Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol. 2006;176(12):7308–16.

    Article  CAS  Google Scholar 

  28. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4(6):565–71. https://doi.org/10.1016/s1074-7613(00)80483-5.

    Article  CAS  PubMed  Google Scholar 

  29. Valitutti S, Lanzavecchia A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol Today. 1997;18(6):299–304.

    Article  CAS  Google Scholar 

  30. Petersdorf EW, Malkki M, O’Huigin C, Carrington M, Gooley T, Haagenson MD, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373(7):599–609. https://doi.org/10.1056/NEJMoa1500140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petersdorf EW, Bengtsson M, De Santis D, Dubois V, Fleischhauer K, Gooley T, et al. Role of HLA-DP expression in graft-versus-host disease after unrelated donor transplantation. J Clin Oncol. 2020;38(24):2712–8. https://doi.org/10.1200/jco.20.00265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol. 2004;4(8):595–602. https://doi.org/10.1038/nri1413.

    Article  CAS  PubMed  Google Scholar 

  33. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574(7780):696–701. https://doi.org/10.1038/s41586-019-1671-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70(21):8368–77. https://doi.org/10.1158/0008-5472.Can-10-1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamaki K, Morishima S, Suzuki S, Shigenari A, Nomura I, Yokota Y, et al. Full-length HLA sequencing in adult T cell leukemia-lymphoma uncovers multiple gene alterations. Leukemia. 2021;35(10):2998–3001. https://doi.org/10.1038/s41375-021-01403-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the technical support provided by Shigenari A and Ito S (Tokai University). This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) KAKENHI (18k08351 to S.T.), Practical Research for Innovative Cancer Control (17ck0106291h0001 to S.T.), and Practical Research Project for Allergic Diseases and Immunology from the Japan Agency for Medical Research and Development (19ek0510022h0003 to S.T. and M.M., and 21ek0510032h0002 to T. Shiina. and M.M.).

Funding

This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) KAKENHI (18k08351 to S.T.), Practical Research for Innovative Cancer Control (17ck0106291h0001 to S.T.), and Practical Research Project for Allergic Diseases and Immunology from the Japan Agency for Medical Research and Development (19ek0510022h0003 to S.T. and M.M., and 21ek0510032h0002 to T. Shiina. and M.M.).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ST, TS, and MM. Execution of experiments and acquisition of data: YA, TS, ST, TS, RH, TG, and TN. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): YA, TS and ST, and TS and MM. Writing, review, and/or revision of the manuscript: YA, ST, TS, MM, and HK. Administrative, technical, or material support (e.g., reporting or organizing data, constructing plasmids): HH, HK, TS, HA, and HK. Study supervision: ST, TS, MM, and HK.

Corresponding authors

Correspondence to Seitaro Terakura, Takashi Shiina or Makoto Murata.

Ethics declarations

Conflict of interest

H. Kiyoi: Research funding from Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Zenyaku Kogyo Co., Ltd., FUJIFILM Corporation, Daiichi Sankyo Co., Ltd., Astellas Pharma Inc., Otsuka Pharmaceutical Co., Ltd., Perseus Proteomics Inc., Nippon Shinyaku Co., Ltd., Eisai Co., Ltd., Bristol Myers Squibb., Takeda Pharmaceutical Co., Ltd., Novartis Pharma K.K., Ono Pharmaceutical Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Sanofi K.K., CURED Inc. and AbbVie Inc.; honoraria from Astellas Pharma Inc., and Novartis Pharma K.K. The other authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, Y., Sakai, T., Terakura, S. et al. Downregulation of HLA class II is associated with relapse after allogeneic stem cell transplantation and alters recognition by antigen-specific T cells. Int J Hematol 115, 371–381 (2022). https://doi.org/10.1007/s12185-021-03273-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03273-w

Keywords

Navigation