Skip to main content

Advertisement

Log in

MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. https://doi.org/10.1056/NEJMoa1312542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. https://doi.org/10.1056/NEJMoa1311347.

    Article  CAS  PubMed  Google Scholar 

  3. Araki M, Komatsu N. Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms. Cancer Sci. 2017;108(10):1907–12. https://doi.org/10.1111/cas.13327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79. https://doi.org/10.1182/blood-2016-10-695940.

    Article  CAS  Google Scholar 

  5. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35. https://doi.org/10.1182/blood-2015-11-681932.

    Article  CAS  PubMed  Google Scholar 

  6. Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6(4):368–81. https://doi.org/10.1158/2159-8290.cd-15-1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Araki M, Yang Y, Imai M, Mizukami Y, Kihara Y, Sunami Y, et al. Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia. 2019;33(1):122–31. https://doi.org/10.1038/s41375-018-0181-2.

    Article  CAS  PubMed  Google Scholar 

  8. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307–16. https://doi.org/10.1182/blood-2015-09-671172.

    Article  CAS  PubMed  Google Scholar 

  9. Shide K, Kameda T, Yamaji T, Sekine M, Inada N, Kamiunten A, et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. 2017;31(5):1136–44. https://doi.org/10.1038/leu.2016.308.

    Article  CAS  PubMed  Google Scholar 

  10. Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24. https://doi.org/10.1182/blood-2015-11-679571.

    Article  CAS  PubMed  Google Scholar 

  11. Pecquet C, Chachoua I, Roy A, Balligand T, Vertenoeil G, Leroy E, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133(25):2669–81. https://doi.org/10.1182/blood-2018-09-874578.

    Article  CAS  PubMed  Google Scholar 

  12. Masubuchi N, Araki M, Yang Y, Hayashi E, Imai M, Edahiro Y, et al. Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia. 2020;34(2):499–509. https://doi.org/10.1038/s41375-019-0564-z.

    Article  CAS  PubMed  Google Scholar 

  13. Yang LP, Keating GM. Ruxolitinib: in the treatment of myelofibrosis. Drugs. 2012;72(16):2117–27. https://doi.org/10.2165/11209340-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  14. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. https://doi.org/10.1056/NEJMoa1110556.

    Article  CAS  PubMed  Google Scholar 

  15. Guglielmelli P, Rotunno G, Bogani C, Mannarelli C, Giunti L, Provenzano A, et al. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol. 2016;173(6):938–40. https://doi.org/10.1111/bjh.13644.

    Article  CAS  PubMed  Google Scholar 

  16. Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126(6):790–7. https://doi.org/10.1182/blood-2015-03-633404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2017;31(3):775. https://doi.org/10.1038/leu.2016.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479–88. https://doi.org/10.3324/haematol.2014.115840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122(25):4047–53. https://doi.org/10.1182/blood-2013-02-485888.

    Article  CAS  PubMed  Google Scholar 

  20. Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano JV, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. https://doi.org/10.1186/s13045-017-0417-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pardanani A, Tefferi A. How I treat myelofibrosis after failure of JAK inhibitors. Blood. 2018;132(5):492–500. https://doi.org/10.1182/blood-2018-02-785923.

    Article  CAS  PubMed  Google Scholar 

  22. Pardanani A, Tefferi A. Definition and management of ruxolitinib treatment failure in myelofibrosis. Blood Cancer J. 2014;4: e268. https://doi.org/10.1038/bcj.2014.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newberry KJ, Patel K, Masarova L, Luthra R, Manshouri T, Jabbour E, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–31. https://doi.org/10.1182/blood-2017-05-783225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155–9. https://doi.org/10.1038/nature11303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deshpande A, Reddy MM, Schade GO, Ray A, Chowdary TK, Griffin JD, et al. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia. 2012;26(4):708–15. https://doi.org/10.1038/leu.2011.255.

    Article  CAS  PubMed  Google Scholar 

  26. Bhagwat N, Levine RL, Koppikar P. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms. Int J Hematol. 2013;97(6):695–702. https://doi.org/10.1007/s12185-013-1353-5.

    Article  CAS  PubMed  Google Scholar 

  27. Springuel L, Hornakova T, Losdyck E, Lambert F, Leroy E, Constantinescu SN, et al. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors. Blood. 2014;124(26):3924–31. https://doi.org/10.1182/blood-2014-05-576652.

    Article  CAS  PubMed  Google Scholar 

  28. Schuklenk U. Helsinki declaration revisions. Issues Med Ethics. 2001;9(1):29.

    CAS  PubMed  Google Scholar 

  29. Matsumoto N, Mori S, Hasegawa H, Sasaki D, Mori H, Tsuruda K, et al. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting. Clin Chim Acta. 2016;462:166–73. https://doi.org/10.1016/j.cca.2016.09.023.

    Article  CAS  PubMed  Google Scholar 

  30. Shirane S, Araki M, Morishita S, Edahiro Y, Takei H, Yoo Y, et al. JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica. 2015;100(2):e46–8. https://doi.org/10.3324/haematol.2014.115113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Komatsu N, Yamamoto M, Fujita H, Miwa A, Hatake K, Endo T, et al. Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7. Blood. 1993;82(2):456–64.

    Article  CAS  Google Scholar 

  32. Kurien BT, Scofield RH. Western blotting. Methods. 2006;38(4):283–93. https://doi.org/10.1016/j.ymeth.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  34. Black L, Berenbaum MC. Factors affecting the dye exclusion test for cell viability. Exp Cell Res. 1964;35:9–13.

    Article  CAS  Google Scholar 

  35. Hamilton VT, Habbersett MC, Herman CJ. Flow microfluorometric analysis of cellular DNA: critical comparison of mithramycin and propidium iodide. J Histochem Cytochem. 1980;28(10):1125–8. https://doi.org/10.1177/28.10.6448270.

    Article  CAS  PubMed  Google Scholar 

  36. Saur SJ, Sangkhae V, Geddis AE, Kaushansky K, Hitchcock IS. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood. 2010;115(6):1254–63. https://doi.org/10.1182/blood-2009-06-227033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, et al. Inhibition of USP9X downregulates JAK2-V617F and induces apoptosis synergistically with BH3 mimetics preferentially in ruxolitinib-persistent JAK2-V617F-positive leukemic cells. Cancers. 2020. https://doi.org/10.3390/cancers12020406.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem. 1995;270(10):4979–82. https://doi.org/10.1074/jbc.270.10.4979.

    Article  CAS  PubMed  Google Scholar 

  39. Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med. 1998;338(9):572–80. https://doi.org/10.1056/nejm199802263380903.

    Article  CAS  PubMed  Google Scholar 

  40. Moliterno AR, Spivak JL. Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera. Blood. 1999;94(8):2555–61.

    Article  CAS  Google Scholar 

  41. Besancenot R, Roos-Weil D, Tonetti C, Abdelouahab H, Lacout C, Pasquier F, et al. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation. Blood. 2014;124(13):2104–15. https://doi.org/10.1182/blood-2014-03-559815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pradhan A, Lambert QT, Griner LN, Reuther GW. Activation of JAK2-V617F by components of heterodimeric cytokine receptors. J Biol Chem. 2010;285(22):16651–63. https://doi.org/10.1074/jbc.M109.071191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem. 2008;283(9):5258–66. https://doi.org/10.1074/jbc.M707125200.

    Article  CAS  PubMed  Google Scholar 

  44. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 2012;19(8):754–9. https://doi.org/10.1038/nsmb.2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. 2020;367(6478):643–52. https://doi.org/10.1126/science.aaw3242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han L, Schubert C, Köhler J, Schemionek M, Isfort S, Brümmendorf TH, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9(1):45. https://doi.org/10.1186/s13045-016-0275-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Okada and Ms. Liu Meiou for technical supports. We thank Dr. Nami Masubuchi for her supports for qPCR experiments. We thank Dr. Toshiaki Ohteki and Dr. Masashi Kanayama in Department of Biodefence Research, Medical Research Institute at TMDU for their supports for animal experiments. We also thank Ms. Inoue’s help for IHC staining. This research was supported by Nagao-Takeshi Research grant (Yoshihiro Umezawa) and TMDU Young Investigator Research grant (Yoshihiro Umezawa).

Author information

Authors and Affiliations

Authors

Contributions

SY, SA, DW, MA, OM and NKa designed the experiments. SY, RY, HL, HA, MI and MA performed the experiments. SY, YE, ES, NKo, YN, ND and NKa contributed to collection of clinical samples. SY, RY, HL and KY examined histopathological samples. SY, SA, MA, ES, YN, ND and NKa analyzed the data. SY, TF and NKa performed statistical analysis. SY, SA, MA, NKo, OM and NKa wrote the paper. All the authors have approved the manuscript.

Corresponding author

Correspondence to Norihiko Kawamata.

Ethics declarations

Conflict of interest

All of the authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 603 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, S., Aoyama, S., Yoshimoto, R. et al. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations. Int J Hematol 114, 424–440 (2021). https://doi.org/10.1007/s12185-021-03180-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03180-0

Keywords

Navigation