Skip to main content

Advertisement

Log in

Novel variant fibrinogen γp.C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Introduction

We identified a patient with a novel heterozygous variant fibrinogen, γp.C352R (Niigata II; N-II), who had a bleeding episode and failed infertility treatment and was suspected to have hypodysfibrinogenemia based on low and discordant fibrinogen levels (functional assay 0.33 g/L, immunological assay 0.91 g/L). We analyzed the mechanism of this rare phenotype of a congenital fibrinogen disorder.

Materials and methods

Patient plasma fibrinogen was purified and protein characterization and thrombin-catalyzed fibrin polymerization performed. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cells were established and the assembly and secretion of variant fibrinogen analyzed by ELISA and western blotting.

Results

Purified N-II plasma fibrinogen had a small lower molecular weight band below the normal γ-chain and slightly reduced fibrin polymerization. A limited proportion of p.C352R fibrinogen was secreted into the culture medium of established CHO cell lines, but the γ-chain of p.C352R was synthesized and variant fibrinogen was assembled inside the cells.

Conclusion

We demonstrated that fibrinogen N-II, γp.C352R was associated with markedly reduced secretion of variant fibrinogen from CHO cells, that fibrin polymerization of purified plasma fibrinogen was only slightly affected, and that fibrinogen N-II produces hypodysfibrinogenemia in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang J-Z, Redman C. Fibrinogen assembly and secretion. J Biol Chem. 1996;271:30083–8.

    Article  CAS  PubMed  Google Scholar 

  2. Côté HC, Lord ST, Pratt KP. gamma-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the gamma chain of human fibrinogen. Blood. 1998;92:2195–212.

    Article  PubMed  Google Scholar 

  3. Weisel JW, Stauffacher CV, Bullitt E, Cohen C. A model for fibrinogen: domains and sequence. Science. 1985;230:1388–91.

    Article  CAS  PubMed  Google Scholar 

  4. Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Redman CM, Xia H. Fibrinogen Biosynthesis. Ann N Y Acad Sci. 2001;936:480–95.

    Article  CAS  PubMed  Google Scholar 

  6. de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost. 2013;39:585–95.

    Article  PubMed  CAS  Google Scholar 

  7. Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost. 2017;15:876–88.

    Article  CAS  PubMed  Google Scholar 

  8. Kruithof EKO, Dunoyer-Geindre S. Human tissue-type plasminogen activator. Thromb Haemost. 2014;112:243–54.

    Article  CAS  PubMed  Google Scholar 

  9. Kruse KB, Dear A, Kaltenbrun ER, Crum BE, George PM, Brennan SO, et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am J Pathol. 2006;168:1299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puls F, Goldschmidt I, Bantel H, Agne C, Bröcker V, Dämmrich M, et al. Autophagy-enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. J Hepatol. 2013;59:626–30.

    Article  CAS  PubMed  Google Scholar 

  11. Groupe d’Etude sur 1’Hémostase et la Thrombose, Base de données des variants du Fibrinogène. http://site.geht.org/base-de-donnees-fibrinogene/ (accessed 19th Mar 2021)

  12. Haneishi A, Terasawa F, Fujihara N, Yamauchi K, Okumura N, Katsuyama T. Recombinant variant fibrinogens substituted at residues γ326Cys and γ339Cys demonstrated markedly impaired secretion of assembled fibrinogen. Thromb Res. 2009;124:368–72.

    Article  CAS  PubMed  Google Scholar 

  13. Soya K, Takezawa Y, Okumura N, Terasawa F. Nonsense-mediated mRNA decay was demonstrated in two hypofibrinogenemias caused by heterozygous nonsense mutations of FGG, Shizuoka III and Kanazawa II. Thromb Res. 2013;132:465–70.

    Article  CAS  PubMed  Google Scholar 

  14. Okumura N, Gorkun OV, Lord ST. Severely impaired polymerization of recombinant fibrinogen γ-364 Asp –> His, the substitution discovered in a heterozygous individual. J Biol Chem. 1997;272:29596–601.

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda M, Kobayashi T, Arai S, Mukai S, Takezawa Y, Terasawa F, et al. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole ‘a’ and calcium binding sites. Thromb Res. 2014;134:518–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda M, Arai S, Mukai S, Takezawa Y, Terasawa F, Okumura N. Novel heterozygous dysfibrinogenemia, Sumida (AαC472S), showed markedly impaired lateral aggregation of protofibrils and mildly lower functional fibrinogen levels. Thromb Res. 2015;135:710–7.

    Article  CAS  PubMed  Google Scholar 

  17. Mukai S, Ikeda M, Takezawa Y, Sugano M, Honda T, Okumura N. Differences in the function and secretion of congenital aberrant fibrinogenemia between heterozygous γD320G (Okayama II) and γΔN319-ΔD320 (Otsu I). Thromb Res. 2015;136:1318–24.

    Article  CAS  PubMed  Google Scholar 

  18. Fujihara N, Haneishi A, Yamauchi K, Terasawa F, Ito T, Ishida F, et al. A C-terminal amino acid substitution in the γ-chain caused by a novel heterozygous frameshift mutation (Fibrinogen Matsumoto VII) results in hypofibrinogenaemia. Thromb Haemost. 2010;104:213–33.

    Article  CAS  PubMed  Google Scholar 

  19. Okumura N, Terasawa F, Tanaka H, Hirota M, Ota H, Kitano K, et al. Analysis of fibrinogen γ-chain truncations shows the C-terminus, particularly γIle387, is essential for assembly and secretion of this multichain protein. Blood. 2002;99:3654–60.

    Article  CAS  PubMed  Google Scholar 

  20. Okumura N, Furihata K, Terasawa F, Nakagoshi R, Ueno I, Katsuyama T. Fibrinogen Matsumoto I: a gamma 364 Asp–>His (GAT–>CAT) substitution associated with defective fibrin polymerization. Thromb Haemost. 1996;75:887–91.

    Article  CAS  PubMed  Google Scholar 

  21. Terasawa F, Okumura N, Kitano K, Hayashida N, Shimosaka M, Okazaki M, et al. Hypofibrinogenemia associated with a heterozygous missense mutation γ153Cys to Arg (Matsumoto IV). In vitro expression demonstrates defective secretion of the variant fibrinogen. Blood. 1999;94:4122–31.

    Article  CAS  PubMed  Google Scholar 

  22. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  23. Arai S, Ogiwara N, Mukai S, Takezawa Y, Sugano M, Honda T, et al. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen. Int J Hematol. 2017;105:758–68.

    Article  CAS  PubMed  Google Scholar 

  24. Guglielmone HA, Sanchez MC, Abate Daga D, Bocco JL. A new heterozygous mutation in gamma fibrinogen gene leading to 326 Cys–>Ser substitution in fibrinogen Córdoba is associated with defective polymerization and familial hypodysfibrinogenemia. J Thromb Haemost. 2004;2:352–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ushijima A, Komai T, Masukawa A, Oikawa K, Morita N, Asai S, et al. Hypodysfibrinogenemia with a heterozygous mutation of γCys326Ser by the novel transversion of TGT to TCT in a patient with pulmonary thromboembolism and right ventricular thrombus. Cardiology. 2017;137:167–72.

    Article  CAS  PubMed  Google Scholar 

  26. Smith N, Bornikova L, Noetzli L, Guglielmone H, Minoldo S, Backos DS, et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost. 2018;2:800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer M, Franke K, Richter W, Steiniger F, Seyfert UT, Schenk J, et al. New molecular defects in the gamma subdomain of fibrinogen D-domain in four cases of (hypo)dysfibrinogenemia: fibrinogen variants Hannover VI, Homburg VII. Stuttgart and Suhl Thromb Haemost. 2003;89:637–46.

    Article  CAS  PubMed  Google Scholar 

  28. Dear A, Brennan SO, George PM. Familial hypodysfibrinogenaemia associated with second occurrence of gamma326 Cys–>Tyr mutation. Thromb Haemost. 2005;93:612–3.

    Article  CAS  PubMed  Google Scholar 

  29. Cheah CY, Brennan SO, Kennedy H, Januszewicz EH, Maxwell E, Burbury K. Fibrinogen Melbourne: a novel congenital hypodysfibrinogenemia caused by γ326Cys-Phe in the fibrinogen γ chain, presenting as massive splanchnic venous thrombosis. Blood Coagul Fibrinolysis. 2012;23:563–5.

    Article  CAS  PubMed  Google Scholar 

  30. Brennan SO, Laurie A, Smith M. Novel FGG variant (γ339C–>S) confirms importance of the γ326-339 disulphide bond for plasma expression of newly synthesised fibrinogen. Thromb Haemost. 2015;113:903–5.

    Article  PubMed  Google Scholar 

  31. Castaman G, Giacomelli SH, Biasoli C, Contino L, Radossi P. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol. 2019;103:379–84.

    Article  CAS  PubMed  Google Scholar 

  32. Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen gamma-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J. 1992;283:187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72:585–617.

    Article  CAS  PubMed  Google Scholar 

  34. Casini A, Blondon M, Lebreton A, Koegel J, Tintillier V, de Maistre E, et al. Natural history of patients with congenital dysfibrinogenemia. Blood. 2015;125:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar R, Dawson J, Varga E, Canini JT, Monda KL, Dunn AL. Fibrinogen Columbus II: a novel c1075G>T mutation in the FGG gene causing hypodysfibrinogenemia and thrombosis in an adolescent male. Pediatr Blood Cancer. 2019;66:e27832.

    Article  PubMed  CAS  Google Scholar 

  36. Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol. 2006;56:230–6.

    Article  CAS  PubMed  Google Scholar 

  37. Brennan SO, Wyatt J, Medicina D, Callea F, George PM. Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly–>Arg mutation. Am J Pathol. 2000;157:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brennan SO, Davis RL, Conard K, Savo A, Furuya KN. Novel fibrinogen mutation γ314Thr–>Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia. Liver Int. 2010;30:1541–7.

    Article  CAS  PubMed  Google Scholar 

  39. Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D’Antiga L, et al. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen γ-module. J Thromb Haemost. 2015;13:1459–67.

    Article  CAS  PubMed  Google Scholar 

  40. Callea F, Giovannoni I, Sari S, Guldal E, Dalgic B, Akyol G, et al. Fibrinogen gamma chain mutations provoke fibrinogen and apolipoprotein B Plasma deficiency and liver storage. Int J Mol Sci. 2017;18:2717.

    Article  PubMed Central  CAS  Google Scholar 

  41. Dib N, Quelin F, Ternisien C, Hanss M, Michalak S, De Mazancourt P, et al. Fibrinogen angers with a new deletion (gamma GVYYQ 346–350) causes hypofibrinogenemia with hepatic storage. J Thromb Haemost. 2007;5:1999–2005.

    Article  CAS  PubMed  Google Scholar 

  42. Burcu G, Bellacchio E, Sag E, Cebi AH, Saygin I, Bahadir A, et al. Structural characteristics in the γ chain variants associated with fibrinogen storage disease suggest the underlying pathogenic mechanism. Int J Mol Sci. 2020;21(14):5139.

    Article  PubMed Central  Google Scholar 

  43. Brennan SO, Maghzal G, Shneider BL, Gordon R, Magid MS, George PM. Novel fibrinogen gamma375 Arg–>Trp mutation (fibrinogen aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology. 2002;36:652–8.

    Article  CAS  PubMed  Google Scholar 

  44. Neerman-Arbez M. To aggregate or not to aggregate. J Thromb Haemost. 2007;5:1997–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hershko A, Ciechanover A. The ubiquitin system. Ann Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Takashi Ushiki (Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Japan) and Dr. Yoshinobu Seki (Department of Hematology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan) for the patient referral of Niigata II. This work was supported by JSPS KAKENHI Grant Number JP20K07799 (Nobuo Okumura).

Author information

Authors and Affiliations

Authors

Contributions

Masahiro Yoda, Takahiro Kaido, Tomu Kamijo performed the experiments. Masahiro Yoda wrote the paper. Chiaki Taira, Yumiko Higuchi, Shinpei Arai and Nobuo Okumura designed the research and discussed the data. Shinpei Arai and Nobuo Okumura reviewed the paper.

Corresponding author

Correspondence to Shinpei Arai.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoda, M., Kaido, T., Kamijo, T. et al. Novel variant fibrinogen γp.C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment. Int J Hematol 114, 325–333 (2021). https://doi.org/10.1007/s12185-021-03174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03174-y

Keywords

Navigation