Skip to main content

Advertisement

Log in

Circulatory miR-155 correlation with platelet and neutrophil recovery after autologous hematopoietic stem cell transplantation, a multivariate analysis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The involvement of microRNAs in the regulation of hematopoietic stem cells paves the way for their use in the management of autologous HSC transplantation (AHSCT). We aimed to evaluate the predictive value of circulatory microRNAs in extracellular vesicles (EVs) and plasma in platelet and neutrophil engraftment. Circulatory miR-125b, mir-126, miR-150, and miR-155 expression was assessed in isolated EVs and plasma in samples collected from AHSCT candidates. Multivariate analysis, COX models, and ROC assessment were performed to evaluate the predictive values of these microRNAs in platelet and neutrophil engraftment. miR-155 expression following conditioning with other clinical factors such as chemotherapy courses after diagnosis was the most significant predictors of platelet/neutrophil engraftment. A CD34+ cell count ≥ 3.5 × 106/kg combined with miR-155 could be used as an engraftment predictor; however, in cases where the CD34+ cell count was < 3.5 × 106/kg, this parameter lost its predictive value for engraftment and could be replaced by miR-155. The correlation between miR-155 and platelet/neutrophil engraftment even with lower numbers of CD34+ cells suggests the importance of this microRNA in the prediction of AHSCT outcome. Moreover, miR-155 could be utilized in therapeutic approaches to provide a better outcome for patients undergoing AHSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hübel K, Ostermann H, Glaß B, Noppeney R, Kron F, Kron A, et al. Plerixafor in non-Hodgkin’s lymphoma patients: a German analysis of time, effort and costs. Bone Marrow Transpl. 2019;54(1):123–9.

    Article  Google Scholar 

  2. Snowden JA, Sharrack B, Akil M, Kiely DG, Lobo A, Kazmi M, et al. Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases–a guide for the generalist. Clin Med. 2018;18(4):329.

    Article  Google Scholar 

  3. Giralt S, Costa L, Schriber J, DiPersio J, Maziarz R, McCarty J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Tr. 2014;20(3):295–308.

    Article  Google Scholar 

  4. Kim JS. Hematopoietic stem cell mobilization: current status and future perspective. Blood Res. 2017;52(2):79–81.

    Article  CAS  Google Scholar 

  5. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51.

    Article  CAS  Google Scholar 

  6. Roden C, Lu J. MicroRNAs in control of stem cells in normal and malignant hematopoiesis. Curr Stem Cell Rep. 2016;2(3):183–96.

    Article  Google Scholar 

  7. Nowicki M, Szemraj J, Wierzbowska A, Misiewicz M, Małachowski R, Pluta A, et al. Slower engraftment in patients with high expression of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, miRNA-223 prior to autologous stem cell transplantation and at early time after transplantation. Blood. 2016;128(22):5717. https://doi.org/10.1182/blood.V128.22.5717.5717.

    Article  Google Scholar 

  8. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9(1):320.

    Article  CAS  Google Scholar 

  9. Wang S-Y, Hong Q, Zhang C-Y, Yang Y-J, Cai G-Y, Chen X-M. miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies. Stem Cell Res Ther. 2019;10(1):1–7.

    Article  Google Scholar 

  10. Bejanyan N, Brunstein CG, Cao Q, Lazaryan A, Luo X, Curtsinger J, et al. Delayed immune reconstitution after allogeneic transplantation increases the risks of mortality and chronic GVHD. Blood Adv. 2018;2(8):909–22.

    Article  CAS  Google Scholar 

  11. Song G-Y, Jung S-H, Ahn S-Y, Jung S-Y, Yang D-H, Ahn J-S, et al. Optimal chemo-mobilization for the collection of peripheral blood stem cells in patients with multiple myeloma. BMC Cancer. 2019;19(1):59.

    Article  Google Scholar 

  12. Wang S, Min J, Yu Y, Yin L, Wang Q, Shen H, et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm. J Thorac Dis. 2019;11(10):4337.

    Article  Google Scholar 

  13. Zhang L, Li H, Yuan M, Li D, Sun C, Wang G. Serum exosomal microRNAs as potential circulating biomarkers for endometriosis. Dis Markers. 2020;2020:2456340.

    PubMed  PubMed Central  Google Scholar 

  14. Tian F, Shen Y, Chen Z, Li R, Ge Q. No significant difference between plasma miRNAs and plasma-derived exosomal miRNAs from healthy people. Biomed Res Int. 2017;2017:1304816.

    PubMed  PubMed Central  Google Scholar 

  15. Montagnana M, Benati M, Tagetti A, Raffaelli R, Danese E, Zatti N, et al. Evaluation of circ_100219 and miR-135b in serum and exosomes of healthy pregnant women. J Matern Fetal Neonatal Med. 2019;. https://doi.org/10.1080/14767058.2019.1689556.

    Article  PubMed  Google Scholar 

  16. Salvucci O, Jiang K, Gasperini P, Maric D, Zhu J, Sakakibara S, et al. MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica. 2012;97(6):818–26.

    Article  CAS  Google Scholar 

  17. Itkin T, Kumari A, Schneider E, Gur-Cohen S, Ludwig C, Brooks R, et al. MicroRNA-155 promotes G-CSF-induced mobilization of murine hematopoietic stem and progenitor cells via propagation of CXCL12 signaling. Leukemia. 2017;31(5):1247–50.

    Article  CAS  Google Scholar 

  18. Tano N, Kim HW, Ashraf M. microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS ONE. 2011;6(10):e23114.

    Article  CAS  Google Scholar 

  19. Ooi AL, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA. 2010;107(50):21505–10.

    Article  CAS  Google Scholar 

  20. Adams BD, Guo S, Bai H, Guo Y, Megyola CM, Cheng J, et al. An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep. 2012;2(4):1048–60. https://doi.org/10.1016/j.celrep.2012.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Itkin T, Ludin A, Gur-Cohen S, Ludwig C, Brooks R, Golan K, et al. Microrna-155 promotes hematopoietic stem and progenitor cell mobilization and proliferation. Blood. 2012;120(21):214. https://doi.org/10.1182/blood.V120.21.214.214.

    Article  Google Scholar 

  22. Yamaguchi J, Chinen Y, Takimoto-Shimomura T, Nagata H, Muramatsu A, Kuriyama K, et al. Prediction of delayed platelet engraftment after autologous stem cell transplantation for B-cell non-Hodgkin lymphoma. Leuk Lymphoma. 2019;60(14):3434–41.

    Article  CAS  Google Scholar 

  23. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood. 1995;86(10):3961–9.

    Article  CAS  Google Scholar 

  24. Takizawa H, Kubo-Akashi C, Nobuhisa I, Kwon S-M, Iseki M, Taga T, et al. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein. Lnk Blood. 2006;107(7):2968–75.

    Article  CAS  Google Scholar 

  25. Zhang Y, Roos M, Himburg H, Termini CM, Quarmyne M, Li M, et al. PTPσ inhibitors promote hematopoietic stem cell regeneration. Nat Commun. 2019;10(1):1–15.

    Article  Google Scholar 

  26. Noach EJ, Ausema A, van Os R, Akkerman I, Koopal S, Weersing E, et al. Chemotherapy prior to autologous bone marrow transplantation impairs long-term engraftment in mice. Exp Hematol. 2003;31(6):528–34.

    Article  CAS  Google Scholar 

  27. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013;19(6):695.

    Article  CAS  Google Scholar 

  28. Kenyon M, Babic A. Engraftment, graft failure, and rejection—the european blood and marrow transplantation textbook for nurses: under the auspices of EBMT. 2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK543668/doi:10.1007/978-3-319-50026-3.

  29. Lee K, Jung S, Kim S, Jang J, Kim K, Kim W, et al. Incidence and risk factors of poor mobilization in adult autologous peripheral blood stem cell transplantation: a single-centre experience. Vox Sang. 2014;107(4):407–15.

    Article  CAS  Google Scholar 

  30. Weaver C, Birch R, Greco F, Schwartzberg L, McAneny B, Moore M, et al. Mobilization and harvesting of peripheral blood stem cells: randomized evaluations of different doses of filgrastim. Br J Haematol. 1998;100(2):338–47.

    Article  CAS  Google Scholar 

  31. Wolf JTD, Imhoff GV, Huls GA, Vellenga E. Influence of different dosages of cyclophosphamide on stem cell mobilization and engraftment in newly diagnosed multiple myeloma patients treated with a thalidomide containing regimen. Blood. 2010;116(21):3494. https://doi.org/10.1182/blood.V116.21.3494.3494.

    Article  Google Scholar 

  32. Xu Y, Yao Y, Yao W, Jin S, Yan L, Shang J, et al. Application of the conditioning regimen with busulfan and cyclophosphamide in autologous hematopoietic stem cell transplantation in multiple myeloma. Blood. 2017;130(Supplement 1):5517.

    Google Scholar 

  33. Reshef R, Porter D. Reduced-intensity conditioned allogeneic SCT in adults with AML. Bone Marrow Transpl. 2015;50(6):759–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank staff of BMT department of Taleghani Hospital, Tehran for their general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 121 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, M., Farsani, M.A., Amiri, V. et al. Circulatory miR-155 correlation with platelet and neutrophil recovery after autologous hematopoietic stem cell transplantation, a multivariate analysis. Int J Hematol 114, 235–245 (2021). https://doi.org/10.1007/s12185-021-03154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03154-2

Keywords

Navigation