Okajima K, Sakamoto Y, Uchiba M. Heterogeneity in the incidence and clinical manifestations of disseminated intravascular coagulation: a study of 204 cases. Am J Hematol. 2000;65(3):215–22.
CAS
PubMed
Google Scholar
Singh B, Hanson AC, Alhurani R, Wang S, Herasevich V, Cartin-Ceba R, et al. Trends in the incidence and outcomes of disseminated intravascular coagulation in critically ill patients (2004-2010): a population-based study. Chest. 2013;143(5):1235–42.
PubMed
Google Scholar
Ikezoe T. Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin. Int J Hematol. 2014;100(1):27–37.
CAS
PubMed
Google Scholar
Uchiumi H, Matsushima T, Yamane A, Doki N, Irisawa H, Saitoh T, et al. Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol. 2007;86(2):137–42.
PubMed
Google Scholar
Chi S, Ikezoe T. Disseminated intravascular coagulation in non-Hodgkin lymphoma. Int J Hematol. 2015;102(4):413–9.
CAS
PubMed
Google Scholar
Carreras E, Diaz-Ricart M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transplant. 2011;46(12):1495–502.
CAS
PubMed
Google Scholar
Carreras E, Diaz-Ricart M. Early complications of endothelial origin. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies [Internet]. 7 Chapter 42. ed. Cham: Springer; 2019. p. 315–22.
Google Scholar
Falanga A, Iacoviello L, Evangelista V, Consonni R, Belotti D, D’Orazio A, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia given all-trans-retinoic acid. Blood. 1995;86:1072.
CAS
PubMed
Google Scholar
Bauer KA, Rosenberg RD. Thrombin generation in acute promyelocytic leukemia. Blood. 1984;64:791.
CAS
PubMed
Google Scholar
Mjers TJ, Rickles FR, Barb C, Cronlund M. Fibrinopeptide A in acute leukemia: relationship of activation of blood coagulation to disease activity. Blood. 1981;57:518.
Google Scholar
Dicke C, Amirkhosravi A, Spath B, Jiménez-Alcázar M, Fuchs T, Davila M, Francis JL, Bokemeyer C, Langer F. Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: a single-center cohort study. Exp Hematol Oncol. 2015;6(4):22.
Google Scholar
Sase T, Wada H, Yamaguchi M, Ogawa S, Kamikura Y, Nishikawa M, et al. Haemostatic abnormalities and thrombotic disorders in malignant lymphoma. Thromb Haemost. 2005;93(1):153–9.
CAS
PubMed
Google Scholar
Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry. 1985;24:5558–67.
CAS
PubMed
Google Scholar
Falanga A, Alessio MG, Donati MB, Barbui T. A new procoagulant in acute leukemia. Blood. 1988;71:870–5.
CAS
PubMed
Google Scholar
Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.
CAS
PubMed
Google Scholar
Ito T, Kawahara K, Nakamura T, Yamada S, Nakamura T, Abeyama K, et al. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J Thromb Haemost. 2007;5(1):109–16.
CAS
PubMed
Google Scholar
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5.
CAS
PubMed
Google Scholar
Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21.
CAS
PubMed
PubMed Central
Google Scholar
McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.
CAS
PubMed
PubMed Central
Google Scholar
Nakahara M, Ito T, Kawahara K, Yamamoto M, Nagasato T, Shrestha B, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One. 2013;8(9):e75961.
CAS
PubMed
PubMed Central
Google Scholar
Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.
CAS
PubMed
PubMed Central
Google Scholar
Harada-Shirado K, Wang X, Mori H, Fukatsu M, Takahashi H, Shichishima-Nakamura A, et al. Circulating intranuclear proteins may play a role in development of disseminated intravascular coagulation in individuals with acute leukemia. Int J Hematol. 2020;111(3):378–87.
CAS
PubMed
Google Scholar
Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers. 2016;2:16037. https://doi.org/10.1038/nrdp.2016.37.
Article
PubMed
Google Scholar
Tipoe TL, Wu WKK, Chung L, Gong M, Dong M, Liu T, et al. Plasminogen activator inhibitor 1 for predicting sepsis severity and mortality outcomes: a systematic review and meta-analysis. Front Immunol. 2018;9:1218. https://doi.org/10.3389/fimmu.2018.01218.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang D, Yang Y, Sun J, Dong X, Wang J, Liu H, et al. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia. Front Med. 2017;11(3):410–22.
PubMed
Google Scholar
Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340(13):994–1004.
CAS
PubMed
Google Scholar
O’Connell PA, Madureira PA, Berman JN, Liwski RS, Waisman DM. Regulation of S100A10 by the PML-RAR-α oncoprotein. Blood. 2011;117(15):4095–105.
PubMed
Google Scholar
Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost. 2013;11(1):26–34.
CAS
PubMed
Google Scholar
Tapiovaara H, Alitalo R, Stephens R, Myöhänen H, Ruutu T, Vaheri A. Abundant urokinase activity on the surface of mononuclear cells from blood and bone marrow of acute leukemia patients. Blood. 1993;82:914–9.
CAS
PubMed
Google Scholar
Nadir Y, Katz T, Sarig G, Hoffman R, Oliven A, Rowe JM. Hemostatic balance on the surface of leukemic cells: the role of tissue factor and urokinase plasminogen activator receptor. Haematologica. 2005;90:1549–56.
CAS
PubMed
Google Scholar
Niiya K, Ozawa T, Tsuzawa T, Ueshima S, Matsuo O, Sakuragawa N. Transcriptional regulation of urokinase-type plasminogen activator receptor by cyclic AMP in PL-21 human myeloid leukemia cells: comparison with the regulation by phorbol myristate acetate. Thromb Haemost. 1998;79(3):574–8.
CAS
PubMed
Google Scholar
Pluchart C, Poitevin G, Colinart-Thomas M, Guimard G, Audonnet S, et al. Vincristine induces procoagulant activity of the human lymphoblastic leukemia cell line Jurkat through the release of extracellular vesicles. J Thromb Thrombolysis. 2019;48(2):195–202.
CAS
PubMed
Google Scholar
Kubota T, Andoh K, Sadakata H, Tanaka H, Kobayashi N. Tissue factor released from leukemic cells. Thromb Haemost. 1991;65(1):59–63.
CAS
PubMed
Google Scholar
Walsh J, Wheeler HR, Geczy CL. Modulation of tissue factor on human monocytes by cisplatin and adriamycin. Br J Haematol. 1992;81(4):480–8.
CAS
PubMed
Google Scholar
de la Serna J, Montesinos P, Vellenga E, Rayón C, Parody R, León A, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111(7):3395–402.
PubMed
Google Scholar
Di Bona E, Avvisati G, Castaman G, Luce Vegna M, De Sanctis V, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108(4):689–95.
PubMed
Google Scholar
Kim H, Lee JH, Choi SJ, Lee JH, Seol M, Lee YS, Kim WK, Lee JS, Lee KH. Risk score model for fatal intracranial hemorrhage in acute leukemia. Leukemia. 2006;20(5):770–6.
CAS
PubMed
Google Scholar
Ichikawa K, Edahiro Y, Gotoh A, Iiduka K, Komatsu N, Koike M. Co-occurrence of hyperleukocytosis and elevated fibrin-fibrinogen degradation product levels is a risk factor for early intracranial hemorrhage in patients with de novo acute leukemia. Int J Hematol. 2016;104(5):612–20.
CAS
PubMed
Google Scholar
Breccia M, Avvisati G, Latagliata R, Carmosino I, Guarini A, De Propris MS, et al. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features. Leukemia. 2007;21:79–83.
CAS
PubMed
Google Scholar
Kojima S, Nishioka C, Chi S, Yokoyama A, Ikezoe T. In vitro studies on the role of recombinant human soluble thrombomodulin in the context of retinoic acid mediated APL differentiation syndrome. Leuk Res. 2017;63:1–9.
CAS
PubMed
Google Scholar
Hashimoto S, Koike T, Tatewaki W, Seki Y, Sato N, Azegami T, et al. Fatal thromboembolism in acute promyelocytic leukemia during all-trans retinoic acid therapy combined with antifibrinolytic therapy for prophylaxis of hemorrhage. Leukemia. 1994;8(7):1113–5.
CAS
PubMed
Google Scholar
Tsukada N, Wada K, Aoki S, Hashimoto S, Kishi K, Takahashi M, et al. Induction therapy with all-trans retinoic acid for acute promyelocytic leukemia: a clinical study of 10 cases, including a fatal [correction of fetal] case with thromboembolism. Intern Med. 1996;35(1):10–4.
CAS
PubMed
Google Scholar
Asakura H, Takahashi H, Uchiyama T, Eguchi Y, Okamoto K, Kawasugi K, et al. Proposal for new diagnostic criteria for DIC from the Japanese Society on Thrombosis and Hemostasis. Thromb J. 2016;14:42.
PubMed
PubMed Central
Google Scholar
Asakura H, Takahashi H, Tsuji H, Matsushita T, Ninomiya H, Honda G, et al. Post-marketing surveillance of thrombomodulin alfa, a novel treatment of disseminated intravascular coagulation—safety and efficacy in 1,032 patients with hematologic malignancy. Thromb Res. 2014;133(3):364–70.
CAS
PubMed
Google Scholar
Osone S, Fukushima K, Yano M, Kakazu M, Sano H, Kato Y, et al. Supportive care for hemostatic complications associated with pediatric leukemia: a national survey in Japan. Int J Hematol. 2019;110(6):743–50.
CAS
PubMed
Google Scholar
Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1.
PubMed
PubMed Central
Google Scholar
Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost. 2001;85:5–11.
CAS
PubMed
Google Scholar
Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Investig. 2005;115:1267–74.
CAS
PubMed
Google Scholar
Pan B, Wang X, Nishioka C, Honda G, Yokoyama A, Zeng L, et al. G-protein coupled receptor 15 mediates angiogenesis and cytoprotective function of thrombomodulin. Sci Rep. 2017;7(1):692.
PubMed
PubMed Central
Google Scholar
Ikezoe T, Yang J, Nishioka C, Honda G, Furihata M, Yokoyama A. Thrombomodulin protects endothelial cells from a calcineurin inhibitor-induced cytotoxicity by upregulation of extracellular signal-regulated kinase/myeloid leukemia cell-1 signaling. Arterioscler Thromb Vasc Biol. 2012;32(9):2259–70.
CAS
PubMed
Google Scholar
Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, et al. The fifth epidermal growth factor like region of thrombomodulin alleviates LPS-induced sepsis through interacting with GPR15. Thromb Haemost. 2017;117(3):570–9.
PubMed
Google Scholar
Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, et al. The fifth epidermal growth factor-like region of thrombomodulin alleviates murine graft-versus-host disease in a G-protein coupled receptor 15 dependent manner. Biol Blood Marrow Transplant. 2017;23(5):746–56.
CAS
PubMed
Google Scholar
Saito H, Maruyama I, Shimazaki S, Yamamoto Y, Aikawa N, Ohno R, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41.
CAS
PubMed
Google Scholar
Matsushita T, Watanabe J, Honda G, Mimuro J, Takahashi H, Tsuji H, et al. Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: a retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb Res. 2014;133(5):772–81.
CAS
PubMed
Google Scholar
Ikezoe T, Takeuchi A, Isaka M, Arakawa Y, Iwabu N, Kin T, et al. Recombinant human soluble thrombomodulin safely and effectively rescues acute promyelocytic leukemia patients from disseminated intravascular coagulation. Leuk Res. 2012;36(11):1398–402.
CAS
PubMed
Google Scholar
Kawano N, Kuriyama T, Yoshida S, Yamashita K, Ochiai H, Nakazaki S, et al. Clinical features and treatment outcomes of six patients with disseminated intravascular coagulation resulting from acute promyelocytic leukemia and treated with recombinant human soluble thrombomodulin at a single institution. Intern Med. 2013;52(1):55–62.
CAS
PubMed
Google Scholar
Ikezoe T, Yang J, Nishioka C, Isaka M, Iwabu N, Sakai M, et al. Thrombomodulin enhances the antifibrinolytic and antileukemic effects of all-trans retinoic acid in acute promyelocytic leukemia cells. Exp Hematol. 2012;40(6):457–65.
CAS
PubMed
Google Scholar
Takezako N, Sekiguchi N, Nagata A, Homma C, Takezako Y, Noto S, et al. Recombinant human thrombomodulin in the treatment of acute myeloid leukemia patients complicated by disseminated intravascular coagulation: retrospective analysis of outcomes between patients treated with heparin and recombinant human thrombomodulin therapy. Thromb Res. 2015;136(1):20–3.
CAS
PubMed
Google Scholar
Minakata D, Fujiwara SI, Ikeda T, Kawaguchi SI, Toda Y, Ito S, et al. Comparison of gabexate mesilate and nafamostat mesilate for disseminated intravascular coagulation associated with hematological malignancies. Int J Hematol. 2019;109(2):141–6.
CAS
PubMed
Google Scholar
Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83.
CAS
PubMed
PubMed Central
Google Scholar
Schuster SJ, Maziarz RT, Rusch ES, Li J, Signorovitch JE, Romanov VV, et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9.
CAS
PubMed
PubMed Central
Google Scholar
Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J, Dong J, Mei H, Hu Y. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann Hematol. 2019;98(7):1721–32.
CAS
PubMed
Google Scholar
Wang Y, Qi K, Cheng H, Cao J, Shi M, Qiao J, et al. Coagulation disorders after chimeric antigen receptor T cell therapy: analysis of 100 patients with relapsed and refractory hematologic malignancies. Biol Blood Marrow Transplant. 2020;26(5):865–75.
CAS
PubMed
Google Scholar
Taylor FB Jr, Toh C-H, Hoots KW, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.
CAS
PubMed
Google Scholar
Ikezoe T, Takeuchi A, Chi S, Takaoka M, Anabuki K, Kim T, et al. Effect of recombinant human soluble thrombomodulin on clinical outcomes of patients with coagulopathy after hematopoietic stem cell transplantation. Eur J Haematol. 2013;91(5):442–7.
CAS
PubMed
Google Scholar
Matsumoto T, Wada H, Nishiyama H, Hirano T, Sakakura M, Nishii K, et al. Hemostatic abnormalities and changes following bone marrow transplantation. Clin Appl Thromb Hemost. 2004;10:341–50.
PubMed
Google Scholar
Mohty M, Malard F, Abecasis M, Aerts E, Alaskar AS, Aljurf M, et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group. Bone Marrow Transplant. 2020;55(3):485–95.
PubMed
Google Scholar
DeLeve LD, Ito Y, Bethea NW, et al. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastrointest Liver Physiol. 2003;284:G1045–52.
CAS
PubMed
Google Scholar
Corbacioglu S, Jabbour EJ, Mohty M. Risk factors for development of and progression of hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Biol Blood Marrow Transplant. 2019;25(7):1271–80.
PubMed
Google Scholar
Ikezoe T, Togitani K, Komatsu N, Isaka M, Yokoyama A. Successful treatment of sinusoidal obstructive syndrome after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin. Bone Marrow Transplant. 2010;45(4):783–5.
CAS
PubMed
Google Scholar
Ohwada C, Takeuchi M, Kawaguchi T, Tsukamoto S, Sakai S, Takeda Y, et al. Successful treatment with recombinant soluble thrombomodulin of two cases of sinusoidal obstructive syndrome/hepatic veno-occlusive disease after bone marrow transplantation. Am J Hematol. 2011;86(10):886–8.
CAS
PubMed
Google Scholar
Nakamura D, Yoshimitsu M, Kawada H, Inoue H, Kuroki T, Kaieda T, et al. Recombinant human soluble thrombomodulin for the treatment of hepatic sinusoidal obstructive syndrome post allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012;47(3):463–4.
CAS
PubMed
Google Scholar
Inagaki J, Kurauchi K, Fukano R, Noguchi M, Okamura J. Heterogeneous response to recombinant thrombomodulin by grade of sinusoidal obstructive syndrome after pediatric stem cell transplantation. Bone Marrow Transplant. 2016;51(11):1543–5.
CAS
PubMed
Google Scholar
Yakushijin K, Ikezoe T, Ohwada C, Kudo K, Okamura H, Goto H, et al. Clinical effects of recombinant thrombomodulin and defibrotide on sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(5):674–80.
CAS
PubMed
Google Scholar
Ikezoe T, Yang J, Nishioka C, Pan B, Xu K, Furihata M, et al. The fifth epidermal growth factor-like region of thrombomodulin exerts cytoprotective function and prevents SOS in a murine model. Bone Marrow Transplant. 2017;52(1):73–9.
CAS
PubMed
Google Scholar
Wang X, Pan B, Honda G, Wang X, Hashimoto Y, Ohkawara H, et al. Cytoprotective and pro-angiogenic functions of thrombomodulin are preserved in the C loop of the fifth epidermal growth factor-like domain. Haematologica. 2018;103(10):1730–40.
CAS
PubMed
PubMed Central
Google Scholar
Richardson P, Aggarwal S, Topaloglu O, Villa KF, Corbacioglu S. Systematic review of defibrotide studies in the treatment of veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS). Bone Marrow Transplant. 2019;54(12):1951–62.
CAS
PubMed
PubMed Central
Google Scholar
Evangelista V, Piccardoni P, de Gaetano G, Cerletti C. Defibrotide inhibits platelet activation by cathepsin G released from stimulated polymorphonuclear leukocytes. Thromb Haemost. 1992;67(6):660–4.
CAS
PubMed
Google Scholar
Paul W, Gresele P, Momi S, Bianchi G, Page CP. The effect of defibrotide on thromboembolism in the pulmonary vasculature of mice and rabbits and in the cerebral vasculature of rabbits. Br J Pharmacol. 1993;110(4):1565–71.
CAS
PubMed
PubMed Central
Google Scholar
Falanga A, Vignoli A, Marchetti M, Barbui T. Defibrotide reduces procoagulant activity and increases fibrinolytic properties of endothelial cells. Leukemia. 2003;17(8):1636–42.
CAS
PubMed
Google Scholar
Schoergenhofer C, Buchtele N, Gelbenegger G, Derhaschnig U, Firbas C, Kovacevic KD, et al. Defibrotide enhances fibrinolysis in human endotoxemia—a randomized, double blind, crossover trial in healthy volunteers. Sci Rep. 2019;9(1):11136.
PubMed
PubMed Central
Google Scholar
Wang X, Pan B, Hashimoto Y, Ohkawara H, Xu K, Zeng L, et al. Defibrotide stimulates angiogenesis and protects endothelial cells from calcineurin inhibitor-induced apoptosis via upregulation of AKT/Bcl-xL. Thromb Haemost. 2018;118(1):161–73.
PubMed
Google Scholar
Khosla J, Yeh AC, Spitzer TR, Dey BR. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: current paradigm and novel therapies. Bone Marrow Transplant. 2018;53(2):129–37.
CAS
PubMed
Google Scholar
Zeigler ZR, Rosenfeld CS, Andrews DF 3rd, Nemunaitis J, Raymond JM, Shadduck RK, et al. Plasma von Willebrand factor antigen (vWF:AG) and thrombomodulin (TM) levels in adult thrombotic thrombocytopenic purpura/hemolytic uremic syndromes (TTP/HUS) and bone marrow transplant-associated thrombotic microangiopathy (BMT-TM). Am J Hematol. 1996;53(4):213–20.
CAS
PubMed
Google Scholar
Takatsuka H, Wakae T, Mori A, Okada M, Suehiro A, Okamoto T, et al. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome following allogeneic bone marrow transplantation. Bone Marrow Transplant. 2002;29(11):907–11.
CAS
PubMed
Google Scholar
Chua JS, Baelde HJ, Zandbergen M, Wilhelmus S, van Es LA, et al. Complement factor C4d is a common denominator in thrombotic microangiopathy. J Am Soc Nephrol. 2015;26(9):2239–47.
CAS
PubMed
PubMed Central
Google Scholar
Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(17):1676–87.
CAS
PubMed
Google Scholar
Jodele S, Medvedovic M, Luebbering N, Chen J, Dandoy CE, Laskin BL, et al. Interferon-complement loop in transplant-associated thrombotic microangiopathy. Blood Adv. 2020;4(6):1166–77.
CAS
PubMed
PubMed Central
Google Scholar
Jodele S, Davies SM, Lane A, Khoury J, Dandoy C, Goebel J, et al. Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults. Blood. 2014;124(4):645–53.
CAS
PubMed
PubMed Central
Google Scholar
Atefi G, Aisiku O, Shapiro N, et al. Complement activation in trauma patients alters platelet function. Shock. 2016;46:83–8.
PubMed
Google Scholar
Mizuno T, Yoshioka K, Mizuno M, et al. Complement component 5 promotes lethal thrombosis. Sci Rep. 2017;7:42714.
CAS
PubMed
PubMed Central
Google Scholar
Subramaniam S, Jurk K, Hobohm L, Jäckel S, Saffarzadeh M, Schwierczek K, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–302.
CAS
PubMed
PubMed Central
Google Scholar
Yeates L, Slatter MA, Bonanomi S, Lim FLWI, Ong SY, Dalissier A, et al. Use of defibrotide to treat transplant-associated thrombotic microangiopathy: a retrospective study of the Paediatric Diseases and Inborn Errors Working Parties of the European Society of Blood and Marrow Transplantation. Bone Marrow Transplant. 2017;52(5):762–4.
CAS
PubMed
Google Scholar
Fujiwara H, Maeda Y, Sando Y, Nakamura M, Tani K, Ishikawa T, et al. Treatment of thrombotic microangiopathy after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin. Transfusion. 2016;56(4):886–92.
CAS
PubMed
Google Scholar