Skip to main content

Advances in the diagnosis and treatment of disseminated intravascular coagulation in haematological malignancies

Abstract

Haematological malignancies, including acute leukaemia and non-Hodgkin lymphoma, are one of the underlying diseases that frequently cause disseminated intravascular coagulation (DIC), an acquired thrombotic disorder. Concomitant DIC is associated with the severity of the underlying disease and poor prognosis. The Japanese Society on Thrombosis and Hemostasis released the new DIC diagnostic criteria in 2017. This criteria include coagulation markers such as soluble fibrin and the thrombin-antithrombin complex to more accurately evaluate the hypercoagulable state in patients. Among several groups of anticoagulants available, recombinant human soluble thrombomodulin is most frequently used to treat DIC caused by haematological malignancies in Japan. DIC is remitted in parallel with the improvement of the underlying haematological diseases; thus, there is room for debate regarding whether the treatment of DIC would improve the prognosis of patients. Haematopoietic stem cell transplantation as well as the recently introduced chimeric antigen receptor (CAR)-T-cell therapy are innovative therapies to produce a cure in a subset of patients with haematological malignancies. However, coagulopathy frequently occurs after these therapies, which limits the success of the treatment. For example, DIC is noted in approximately 50% of patients after CAT-T-cell therapy in conjunction with cytokine release syndrome. Hematopoietic stem cell transplantation (HSCT) causes endotheliitis, which triggers coagulopathy and the development of potentially lethal complications, such as sinusoidal obstruction syndrome/veno-occlusive disease and transplant-associated thrombotic microangiopathy. This review article describes the pathogenesis, clinical manifestation, diagnosis, and treatment of DIC caused by haematological malignancies, CAR-T-cell therapy, and HSCT.

This is a preview of subscription content, access via your institution.

Fig. 1

This figure is adapted from Ref. [5]

Fig. 2

This figure is adapted from Ref. [26]

Fig. 3
Fig. 4

This figure is adapted from Ref. [3]

Fig. 5

References

  1. Okajima K, Sakamoto Y, Uchiba M. Heterogeneity in the incidence and clinical manifestations of disseminated intravascular coagulation: a study of 204 cases. Am J Hematol. 2000;65(3):215–22.

    CAS  PubMed  Google Scholar 

  2. Singh B, Hanson AC, Alhurani R, Wang S, Herasevich V, Cartin-Ceba R, et al. Trends in the incidence and outcomes of disseminated intravascular coagulation in critically ill patients (2004-2010): a population-based study. Chest. 2013;143(5):1235–42.

    PubMed  Google Scholar 

  3. Ikezoe T. Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin. Int J Hematol. 2014;100(1):27–37.

    CAS  PubMed  Google Scholar 

  4. Uchiumi H, Matsushima T, Yamane A, Doki N, Irisawa H, Saitoh T, et al. Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol. 2007;86(2):137–42.

    PubMed  Google Scholar 

  5. Chi S, Ikezoe T. Disseminated intravascular coagulation in non-Hodgkin lymphoma. Int J Hematol. 2015;102(4):413–9.

    CAS  PubMed  Google Scholar 

  6. Carreras E, Diaz-Ricart M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transplant. 2011;46(12):1495–502.

    CAS  PubMed  Google Scholar 

  7. Carreras E, Diaz-Ricart M. Early complications of endothelial origin. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies [Internet]. 7 Chapter 42. ed. Cham: Springer; 2019. p. 315–22.

    Google Scholar 

  8. Falanga A, Iacoviello L, Evangelista V, Consonni R, Belotti D, D’Orazio A, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia given all-trans-retinoic acid. Blood. 1995;86:1072.

    CAS  PubMed  Google Scholar 

  9. Bauer KA, Rosenberg RD. Thrombin generation in acute promyelocytic leukemia. Blood. 1984;64:791.

    CAS  PubMed  Google Scholar 

  10. Mjers TJ, Rickles FR, Barb C, Cronlund M. Fibrinopeptide A in acute leukemia: relationship of activation of blood coagulation to disease activity. Blood. 1981;57:518.

    Google Scholar 

  11. Dicke C, Amirkhosravi A, Spath B, Jiménez-Alcázar M, Fuchs T, Davila M, Francis JL, Bokemeyer C, Langer F. Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: a single-center cohort study. Exp Hematol Oncol. 2015;6(4):22.

    Google Scholar 

  12. Sase T, Wada H, Yamaguchi M, Ogawa S, Kamikura Y, Nishikawa M, et al. Haemostatic abnormalities and thrombotic disorders in malignant lymphoma. Thromb Haemost. 2005;93(1):153–9.

    CAS  PubMed  Google Scholar 

  13. Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry. 1985;24:5558–67.

    CAS  PubMed  Google Scholar 

  14. Falanga A, Alessio MG, Donati MB, Barbui T. A new procoagulant in acute leukemia. Blood. 1988;71:870–5.

    CAS  PubMed  Google Scholar 

  15. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.

    CAS  PubMed  Google Scholar 

  16. Ito T, Kawahara K, Nakamura T, Yamada S, Nakamura T, Abeyama K, et al. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J Thromb Haemost. 2007;5(1):109–16.

    CAS  PubMed  Google Scholar 

  17. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5.

    CAS  PubMed  Google Scholar 

  18. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakahara M, Ito T, Kawahara K, Yamamoto M, Nagasato T, Shrestha B, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One. 2013;8(9):e75961.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Harada-Shirado K, Wang X, Mori H, Fukatsu M, Takahashi H, Shichishima-Nakamura A, et al. Circulating intranuclear proteins may play a role in development of disseminated intravascular coagulation in individuals with acute leukemia. Int J Hematol. 2020;111(3):378–87.

    CAS  PubMed  Google Scholar 

  23. Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers. 2016;2:16037. https://doi.org/10.1038/nrdp.2016.37.

    Article  PubMed  Google Scholar 

  24. Tipoe TL, Wu WKK, Chung L, Gong M, Dong M, Liu T, et al. Plasminogen activator inhibitor 1 for predicting sepsis severity and mortality outcomes: a systematic review and meta-analysis. Front Immunol. 2018;9:1218. https://doi.org/10.3389/fimmu.2018.01218.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Huang D, Yang Y, Sun J, Dong X, Wang J, Liu H, et al. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia. Front Med. 2017;11(3):410–22.

    PubMed  Google Scholar 

  26. Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340(13):994–1004.

    CAS  PubMed  Google Scholar 

  27. O’Connell PA, Madureira PA, Berman JN, Liwski RS, Waisman DM. Regulation of S100A10 by the PML-RAR-α oncoprotein. Blood. 2011;117(15):4095–105.

    PubMed  Google Scholar 

  28. Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost. 2013;11(1):26–34.

    CAS  PubMed  Google Scholar 

  29. Tapiovaara H, Alitalo R, Stephens R, Myöhänen H, Ruutu T, Vaheri A. Abundant urokinase activity on the surface of mononuclear cells from blood and bone marrow of acute leukemia patients. Blood. 1993;82:914–9.

    CAS  PubMed  Google Scholar 

  30. Nadir Y, Katz T, Sarig G, Hoffman R, Oliven A, Rowe JM. Hemostatic balance on the surface of leukemic cells: the role of tissue factor and urokinase plasminogen activator receptor. Haematologica. 2005;90:1549–56.

    CAS  PubMed  Google Scholar 

  31. Niiya K, Ozawa T, Tsuzawa T, Ueshima S, Matsuo O, Sakuragawa N. Transcriptional regulation of urokinase-type plasminogen activator receptor by cyclic AMP in PL-21 human myeloid leukemia cells: comparison with the regulation by phorbol myristate acetate. Thromb Haemost. 1998;79(3):574–8.

    CAS  PubMed  Google Scholar 

  32. Pluchart C, Poitevin G, Colinart-Thomas M, Guimard G, Audonnet S, et al. Vincristine induces procoagulant activity of the human lymphoblastic leukemia cell line Jurkat through the release of extracellular vesicles. J Thromb Thrombolysis. 2019;48(2):195–202.

    CAS  PubMed  Google Scholar 

  33. Kubota T, Andoh K, Sadakata H, Tanaka H, Kobayashi N. Tissue factor released from leukemic cells. Thromb Haemost. 1991;65(1):59–63.

    CAS  PubMed  Google Scholar 

  34. Walsh J, Wheeler HR, Geczy CL. Modulation of tissue factor on human monocytes by cisplatin and adriamycin. Br J Haematol. 1992;81(4):480–8.

    CAS  PubMed  Google Scholar 

  35. de la Serna J, Montesinos P, Vellenga E, Rayón C, Parody R, León A, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111(7):3395–402.

    PubMed  Google Scholar 

  36. Di Bona E, Avvisati G, Castaman G, Luce Vegna M, De Sanctis V, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108(4):689–95.

    PubMed  Google Scholar 

  37. Kim H, Lee JH, Choi SJ, Lee JH, Seol M, Lee YS, Kim WK, Lee JS, Lee KH. Risk score model for fatal intracranial hemorrhage in acute leukemia. Leukemia. 2006;20(5):770–6.

    CAS  PubMed  Google Scholar 

  38. Ichikawa K, Edahiro Y, Gotoh A, Iiduka K, Komatsu N, Koike M. Co-occurrence of hyperleukocytosis and elevated fibrin-fibrinogen degradation product levels is a risk factor for early intracranial hemorrhage in patients with de novo acute leukemia. Int J Hematol. 2016;104(5):612–20.

    CAS  PubMed  Google Scholar 

  39. Breccia M, Avvisati G, Latagliata R, Carmosino I, Guarini A, De Propris MS, et al. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features. Leukemia. 2007;21:79–83.

    CAS  PubMed  Google Scholar 

  40. Kojima S, Nishioka C, Chi S, Yokoyama A, Ikezoe T. In vitro studies on the role of recombinant human soluble thrombomodulin in the context of retinoic acid mediated APL differentiation syndrome. Leuk Res. 2017;63:1–9.

    CAS  PubMed  Google Scholar 

  41. Hashimoto S, Koike T, Tatewaki W, Seki Y, Sato N, Azegami T, et al. Fatal thromboembolism in acute promyelocytic leukemia during all-trans retinoic acid therapy combined with antifibrinolytic therapy for prophylaxis of hemorrhage. Leukemia. 1994;8(7):1113–5.

    CAS  PubMed  Google Scholar 

  42. Tsukada N, Wada K, Aoki S, Hashimoto S, Kishi K, Takahashi M, et al. Induction therapy with all-trans retinoic acid for acute promyelocytic leukemia: a clinical study of 10 cases, including a fatal [correction of fetal] case with thromboembolism. Intern Med. 1996;35(1):10–4.

    CAS  PubMed  Google Scholar 

  43. Asakura H, Takahashi H, Uchiyama T, Eguchi Y, Okamoto K, Kawasugi K, et al. Proposal for new diagnostic criteria for DIC from the Japanese Society on Thrombosis and Hemostasis. Thromb J. 2016;14:42.

    PubMed  PubMed Central  Google Scholar 

  44. Asakura H, Takahashi H, Tsuji H, Matsushita T, Ninomiya H, Honda G, et al. Post-marketing surveillance of thrombomodulin alfa, a novel treatment of disseminated intravascular coagulation—safety and efficacy in 1,032 patients with hematologic malignancy. Thromb Res. 2014;133(3):364–70.

    CAS  PubMed  Google Scholar 

  45. Osone S, Fukushima K, Yano M, Kakazu M, Sano H, Kato Y, et al. Supportive care for hemostatic complications associated with pediatric leukemia: a national survey in Japan. Int J Hematol. 2019;110(6):743–50.

    CAS  PubMed  Google Scholar 

  46. Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1.

    PubMed  PubMed Central  Google Scholar 

  47. Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost. 2001;85:5–11.

    CAS  PubMed  Google Scholar 

  48. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Investig. 2005;115:1267–74.

    CAS  PubMed  Google Scholar 

  49. Pan B, Wang X, Nishioka C, Honda G, Yokoyama A, Zeng L, et al. G-protein coupled receptor 15 mediates angiogenesis and cytoprotective function of thrombomodulin. Sci Rep. 2017;7(1):692.

    PubMed  PubMed Central  Google Scholar 

  50. Ikezoe T, Yang J, Nishioka C, Honda G, Furihata M, Yokoyama A. Thrombomodulin protects endothelial cells from a calcineurin inhibitor-induced cytotoxicity by upregulation of extracellular signal-regulated kinase/myeloid leukemia cell-1 signaling. Arterioscler Thromb Vasc Biol. 2012;32(9):2259–70.

    CAS  PubMed  Google Scholar 

  51. Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, et al. The fifth epidermal growth factor like region of thrombomodulin alleviates LPS-induced sepsis through interacting with GPR15. Thromb Haemost. 2017;117(3):570–9.

    PubMed  Google Scholar 

  52. Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, et al. The fifth epidermal growth factor-like region of thrombomodulin alleviates murine graft-versus-host disease in a G-protein coupled receptor 15 dependent manner. Biol Blood Marrow Transplant. 2017;23(5):746–56.

    CAS  PubMed  Google Scholar 

  53. Saito H, Maruyama I, Shimazaki S, Yamamoto Y, Aikawa N, Ohno R, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41.

    CAS  PubMed  Google Scholar 

  54. Matsushita T, Watanabe J, Honda G, Mimuro J, Takahashi H, Tsuji H, et al. Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: a retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb Res. 2014;133(5):772–81.

    CAS  PubMed  Google Scholar 

  55. Ikezoe T, Takeuchi A, Isaka M, Arakawa Y, Iwabu N, Kin T, et al. Recombinant human soluble thrombomodulin safely and effectively rescues acute promyelocytic leukemia patients from disseminated intravascular coagulation. Leuk Res. 2012;36(11):1398–402.

    CAS  PubMed  Google Scholar 

  56. Kawano N, Kuriyama T, Yoshida S, Yamashita K, Ochiai H, Nakazaki S, et al. Clinical features and treatment outcomes of six patients with disseminated intravascular coagulation resulting from acute promyelocytic leukemia and treated with recombinant human soluble thrombomodulin at a single institution. Intern Med. 2013;52(1):55–62.

    CAS  PubMed  Google Scholar 

  57. Ikezoe T, Yang J, Nishioka C, Isaka M, Iwabu N, Sakai M, et al. Thrombomodulin enhances the antifibrinolytic and antileukemic effects of all-trans retinoic acid in acute promyelocytic leukemia cells. Exp Hematol. 2012;40(6):457–65.

    CAS  PubMed  Google Scholar 

  58. Takezako N, Sekiguchi N, Nagata A, Homma C, Takezako Y, Noto S, et al. Recombinant human thrombomodulin in the treatment of acute myeloid leukemia patients complicated by disseminated intravascular coagulation: retrospective analysis of outcomes between patients treated with heparin and recombinant human thrombomodulin therapy. Thromb Res. 2015;136(1):20–3.

    CAS  PubMed  Google Scholar 

  59. Minakata D, Fujiwara SI, Ikeda T, Kawaguchi SI, Toda Y, Ito S, et al. Comparison of gabexate mesilate and nafamostat mesilate for disseminated intravascular coagulation associated with hematological malignancies. Int J Hematol. 2019;109(2):141–6.

    CAS  PubMed  Google Scholar 

  60. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schuster SJ, Maziarz RT, Rusch ES, Li J, Signorovitch JE, Romanov VV, et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J, Dong J, Mei H, Hu Y. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann Hematol. 2019;98(7):1721–32.

    CAS  PubMed  Google Scholar 

  63. Wang Y, Qi K, Cheng H, Cao J, Shi M, Qiao J, et al. Coagulation disorders after chimeric antigen receptor T cell therapy: analysis of 100 patients with relapsed and refractory hematologic malignancies. Biol Blood Marrow Transplant. 2020;26(5):865–75.

    CAS  PubMed  Google Scholar 

  64. Taylor FB Jr, Toh C-H, Hoots KW, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

    CAS  PubMed  Google Scholar 

  65. Ikezoe T, Takeuchi A, Chi S, Takaoka M, Anabuki K, Kim T, et al. Effect of recombinant human soluble thrombomodulin on clinical outcomes of patients with coagulopathy after hematopoietic stem cell transplantation. Eur J Haematol. 2013;91(5):442–7.

    CAS  PubMed  Google Scholar 

  66. Matsumoto T, Wada H, Nishiyama H, Hirano T, Sakakura M, Nishii K, et al. Hemostatic abnormalities and changes following bone marrow transplantation. Clin Appl Thromb Hemost. 2004;10:341–50.

    PubMed  Google Scholar 

  67. Mohty M, Malard F, Abecasis M, Aerts E, Alaskar AS, Aljurf M, et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group. Bone Marrow Transplant. 2020;55(3):485–95.

    PubMed  Google Scholar 

  68. DeLeve LD, Ito Y, Bethea NW, et al. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastrointest Liver Physiol. 2003;284:G1045–52.

    CAS  PubMed  Google Scholar 

  69. Corbacioglu S, Jabbour EJ, Mohty M. Risk factors for development of and progression of hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Biol Blood Marrow Transplant. 2019;25(7):1271–80.

    PubMed  Google Scholar 

  70. Ikezoe T, Togitani K, Komatsu N, Isaka M, Yokoyama A. Successful treatment of sinusoidal obstructive syndrome after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin. Bone Marrow Transplant. 2010;45(4):783–5.

    CAS  PubMed  Google Scholar 

  71. Ohwada C, Takeuchi M, Kawaguchi T, Tsukamoto S, Sakai S, Takeda Y, et al. Successful treatment with recombinant soluble thrombomodulin of two cases of sinusoidal obstructive syndrome/hepatic veno-occlusive disease after bone marrow transplantation. Am J Hematol. 2011;86(10):886–8.

    CAS  PubMed  Google Scholar 

  72. Nakamura D, Yoshimitsu M, Kawada H, Inoue H, Kuroki T, Kaieda T, et al. Recombinant human soluble thrombomodulin for the treatment of hepatic sinusoidal obstructive syndrome post allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012;47(3):463–4.

    CAS  PubMed  Google Scholar 

  73. Inagaki J, Kurauchi K, Fukano R, Noguchi M, Okamura J. Heterogeneous response to recombinant thrombomodulin by grade of sinusoidal obstructive syndrome after pediatric stem cell transplantation. Bone Marrow Transplant. 2016;51(11):1543–5.

    CAS  PubMed  Google Scholar 

  74. Yakushijin K, Ikezoe T, Ohwada C, Kudo K, Okamura H, Goto H, et al. Clinical effects of recombinant thrombomodulin and defibrotide on sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(5):674–80.

    CAS  PubMed  Google Scholar 

  75. Ikezoe T, Yang J, Nishioka C, Pan B, Xu K, Furihata M, et al. The fifth epidermal growth factor-like region of thrombomodulin exerts cytoprotective function and prevents SOS in a murine model. Bone Marrow Transplant. 2017;52(1):73–9.

    CAS  PubMed  Google Scholar 

  76. Wang X, Pan B, Honda G, Wang X, Hashimoto Y, Ohkawara H, et al. Cytoprotective and pro-angiogenic functions of thrombomodulin are preserved in the C loop of the fifth epidermal growth factor-like domain. Haematologica. 2018;103(10):1730–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Richardson P, Aggarwal S, Topaloglu O, Villa KF, Corbacioglu S. Systematic review of defibrotide studies in the treatment of veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS). Bone Marrow Transplant. 2019;54(12):1951–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Evangelista V, Piccardoni P, de Gaetano G, Cerletti C. Defibrotide inhibits platelet activation by cathepsin G released from stimulated polymorphonuclear leukocytes. Thromb Haemost. 1992;67(6):660–4.

    CAS  PubMed  Google Scholar 

  79. Paul W, Gresele P, Momi S, Bianchi G, Page CP. The effect of defibrotide on thromboembolism in the pulmonary vasculature of mice and rabbits and in the cerebral vasculature of rabbits. Br J Pharmacol. 1993;110(4):1565–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Falanga A, Vignoli A, Marchetti M, Barbui T. Defibrotide reduces procoagulant activity and increases fibrinolytic properties of endothelial cells. Leukemia. 2003;17(8):1636–42.

    CAS  PubMed  Google Scholar 

  81. Schoergenhofer C, Buchtele N, Gelbenegger G, Derhaschnig U, Firbas C, Kovacevic KD, et al. Defibrotide enhances fibrinolysis in human endotoxemia—a randomized, double blind, crossover trial in healthy volunteers. Sci Rep. 2019;9(1):11136.

    PubMed  PubMed Central  Google Scholar 

  82. Wang X, Pan B, Hashimoto Y, Ohkawara H, Xu K, Zeng L, et al. Defibrotide stimulates angiogenesis and protects endothelial cells from calcineurin inhibitor-induced apoptosis via upregulation of AKT/Bcl-xL. Thromb Haemost. 2018;118(1):161–73.

    PubMed  Google Scholar 

  83. Khosla J, Yeh AC, Spitzer TR, Dey BR. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: current paradigm and novel therapies. Bone Marrow Transplant. 2018;53(2):129–37.

    CAS  PubMed  Google Scholar 

  84. Zeigler ZR, Rosenfeld CS, Andrews DF 3rd, Nemunaitis J, Raymond JM, Shadduck RK, et al. Plasma von Willebrand factor antigen (vWF:AG) and thrombomodulin (TM) levels in adult thrombotic thrombocytopenic purpura/hemolytic uremic syndromes (TTP/HUS) and bone marrow transplant-associated thrombotic microangiopathy (BMT-TM). Am J Hematol. 1996;53(4):213–20.

    CAS  PubMed  Google Scholar 

  85. Takatsuka H, Wakae T, Mori A, Okada M, Suehiro A, Okamoto T, et al. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome following allogeneic bone marrow transplantation. Bone Marrow Transplant. 2002;29(11):907–11.

    CAS  PubMed  Google Scholar 

  86. Chua JS, Baelde HJ, Zandbergen M, Wilhelmus S, van Es LA, et al. Complement factor C4d is a common denominator in thrombotic microangiopathy. J Am Soc Nephrol. 2015;26(9):2239–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(17):1676–87.

    CAS  PubMed  Google Scholar 

  88. Jodele S, Medvedovic M, Luebbering N, Chen J, Dandoy CE, Laskin BL, et al. Interferon-complement loop in transplant-associated thrombotic microangiopathy. Blood Adv. 2020;4(6):1166–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jodele S, Davies SM, Lane A, Khoury J, Dandoy C, Goebel J, et al. Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults. Blood. 2014;124(4):645–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Atefi G, Aisiku O, Shapiro N, et al. Complement activation in trauma patients alters platelet function. Shock. 2016;46:83–8.

    PubMed  Google Scholar 

  91. Mizuno T, Yoshioka K, Mizuno M, et al. Complement component 5 promotes lethal thrombosis. Sci Rep. 2017;7:42714.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Subramaniam S, Jurk K, Hobohm L, Jäckel S, Saffarzadeh M, Schwierczek K, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yeates L, Slatter MA, Bonanomi S, Lim FLWI, Ong SY, Dalissier A, et al. Use of defibrotide to treat transplant-associated thrombotic microangiopathy: a retrospective study of the Paediatric Diseases and Inborn Errors Working Parties of the European Society of Blood and Marrow Transplantation. Bone Marrow Transplant. 2017;52(5):762–4.

    CAS  PubMed  Google Scholar 

  94. Fujiwara H, Maeda Y, Sando Y, Nakamura M, Tani K, Ishikawa T, et al. Treatment of thrombotic microangiopathy after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin. Transfusion. 2016;56(4):886–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by KAKENHI (18H02844) to Ikezoe T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ikezoe.

Ethics declarations

Conflict of interest

Ikezoe T receives a research fund form Asahi Kasei Pharma and Nihon Shinyaku Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikezoe, T. Advances in the diagnosis and treatment of disseminated intravascular coagulation in haematological malignancies. Int J Hematol 113, 34–44 (2021). https://doi.org/10.1007/s12185-020-02992-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02992-w

Keywords

  • DIC
  • Haematological malignancies
  • APL
  • VOD/SOS
  • TA-TMA
  • Cytokine release syndrome