Skip to main content

Mutational profiling in myelofibrosis: implications for management

Abstract

Mutational profiling, usually by targeted next-generation sequencing, is increasingly performed on patients with myeloproliferative neoplasm-associated myelofibrosis (MF), whether primary (PMF) or post-polycythemia vera/essential thrombocythemia (post-PV/ET MF). “Driver” mutations in JAK2, MPL and indels in CALR underlie the vast majority of cases of PMF and post-ET MF; the remainder (≈ 10%) lack identifiable driver mutations, but other clonal markers are usually detectable. Nearly all patients with post-PV MF carry activating JAK2 mutations. In both PMF and post-ET MF, type 1/-like CALR mutations confer a favorable prognosis. Since both type 1/-like and type 2/-like CALR mutations have essentially the same functional consequence, this is a subject of intense research. Additional, “non-driver” mutations, mostly affecting genes encoding epigenetic modifiers or spliceosome components, e.g., ASXL1, EZH2, TET2, DNMT3A, SRSF2 and U2AF1, are frequently found; some of these are associated with inferior survival and have been incorporated into prognostic models. Some mutations, e.g., IDH1/2, are relatively infrequent in chronic phase but are substantially more common in blast phase, and are now therapeutically targetable. While mutational information does not currently influence choice of drug therapy in chronic-phase MF, the presence of a “high molecular risk” genotype is now routinely taken into account for transplant decision-making.

This is a preview of subscription content, access via your institution.

References

  1. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    CAS  PubMed  Article  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    CAS  PubMed  Article  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    CAS  PubMed  Article  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    CAS  PubMed  Article  Google Scholar 

  5. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    CAS  PubMed  Article  Google Scholar 

  7. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    CAS  PubMed  Article  Google Scholar 

  8. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–42.

    CAS  PubMed  Article  Google Scholar 

  10. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116:988–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363:1189–90.

    CAS  PubMed  Article  Google Scholar 

  14. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Guglielmelli P, Biamonte F, Rotunno G, Artusi V, Artuso L, Bernardis I, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood. 2014;123:2157–60.

    CAS  PubMed  Article  Google Scholar 

  16. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol. 2013;161:508–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  PubMed  Article  Google Scholar 

  19. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.

    CAS  PubMed  Article  Google Scholar 

  20. Tefferi A, Finke CM, Lasho TL, Hanson CA, Ketterling RP, Gangat N, et al. U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia. 2018;32:2274.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:601–12.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100:e438–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 2012;19:754–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.

    CAS  PubMed  Article  Google Scholar 

  25. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.

    CAS  PubMed  Article  Google Scholar 

  26. Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41:446–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691.

    CAS  PubMed  Article  Google Scholar 

  30. Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22:756–61.

    CAS  PubMed  Article  Google Scholar 

  31. Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Lo Coco F, Antonioli E, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009;114:1477–83.

    CAS  PubMed  Article  Google Scholar 

  32. Rozovski U, Verstovsek S, Manshouri T, Dembitz V, Bozinovic K, Newberry K, et al. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica. 2017;102:79–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Barosi G, Klersy C, Villani L, Bonetti E, Catarsi P, Poletto V, et al. JAK2(V617F) allele burden 50% is associated with response to ruxolitinib in persons with MPN-associated myelofibrosis and splenomegaly requiring therapy. Leukemia. 2016;30:1772–5.

    CAS  PubMed  Article  Google Scholar 

  34. Maekawa T, Osawa Y, Izumi T, Nagao S, Takano K, Okada Y, et al. Myeloproliferative leukemia protein activation directly induces fibrocyte differentiation to cause myelofibrosis. Leukemia. 2017;31:2709.

    CAS  PubMed  Article  Google Scholar 

  35. Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.

    CAS  PubMed  Article  Google Scholar 

  36. Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.

    CAS  PubMed  Article  Google Scholar 

  38. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    CAS  PubMed  Article  Google Scholar 

  39. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.

    CAS  PubMed  Article  Google Scholar 

  40. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Alvarez-Larran A, Pereira A, Guglielmelli P, Hernandez-Boluda JC, Arellano-Rodrigo E, Ferrer-Marin F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016;101:926–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Finazzi MC, Carobbio A, Cervantes F, Isola IM, Vannucchi AM, Guglielmelli P, et al. CALR mutation, MPL mutation and triple negativity identify patients with the lowest vascular risk in primary myelofibrosis. Leukemia. 2015;29:1209–10.

    CAS  PubMed  Article  Google Scholar 

  43. Pardanani A, Guglielmelli P, Lasho TL, Pancrazzi A, Finke CM, Vannucchi AM, et al. Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia. 2011;25:1834–9.

    CAS  PubMed  Article  Google Scholar 

  44. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13 ; quiz 2615.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28:1568–70.

    CAS  PubMed  Article  Google Scholar 

  46. Tefferi A, Lasho TL, Tischer A, Wassie EA, Finke CM, Belachew AA, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124:2465–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Guglielmelli P, Rotunno G, Fanelli T, Pacilli A, Brogi G, Calabresi L, et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J. 2015;5:e360.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Tefferi A, Nicolosi M, Mudireddy M, Szuber N, Finke CM, Lasho TL, et al. Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients. Am J Hematol. 2018;93:348–55.

    CAS  PubMed  Article  Google Scholar 

  49. Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M, et al. Driver mutations’ effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia. 2017;31:970–3.

    CAS  PubMed  Article  Google Scholar 

  50. Rotunno G, Pacilli A, Artusi V, Rumi E, Maffioli M, Delaini F, et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group. Am J Hematol. 2016;91:681–6.

    CAS  PubMed  Article  Google Scholar 

  51. Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28:1804–10.

    CAS  PubMed  Article  Google Scholar 

  52. Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    CAS  PubMed  Article  Google Scholar 

  54. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.

    CAS  PubMed  Article  Google Scholar 

  55. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    PubMed  Article  Google Scholar 

  56. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494–500.

    CAS  PubMed  Article  Google Scholar 

  57. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2017;36:310.

    PubMed  Article  Google Scholar 

  58. Caramazza D, Begna KH, Gangat N, Vaidya R, Siragusa S, Van Dyke DL, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–8.

    CAS  PubMed  Article  Google Scholar 

  59. Tefferi A, Nicolosi M, Mudireddy M, Lasho TL, Gangat N, Begna KH, et al. Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients. Leukemia. 2018;32:1189–99.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Nicolosi M, Mudireddy M, Lasho TL, Hanson CA, Ketterling RP, Gangat N, et al. Sex and degree of severity influence the prognostic impact of anemia in primary myelofibrosis: analysis based on 1109 consecutive patients. Leukemia. 2018;32:1254–8.

    PubMed  PubMed Central  Article  Google Scholar 

  61. Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70 + Version 2.0: mutation and karyotype-enhanced International Prognostic Scoring System for primary myelofibrosis. J Clin Oncol. 2018;36:1769.

    PubMed  Article  Google Scholar 

  62. Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32:1631.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Kuykendall AT, Talati C, Padron E, Sweet K, Sallman D, List AF, et al. Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic International Prognostic Scoring System (DIPSS) in myelofibrosis patients. Am J Hematol. 2019;94:87–92.

    PubMed  Article  Google Scholar 

  64. Hernandez-Boluda JC, Pereira A, Gomez M, Boque C, Ferrer-Marin F, Raya JM, et al. The International Prognostic Scoring System does not accurately discriminate different risk categories in patients with post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Haematologica. 2014;99:e55–7.

    PubMed  PubMed Central  Article  Google Scholar 

  65. Masarova L, Bose P, Daver N, Pemmaraju N, Newberry KJ, Manshouri T, et al. Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis. Leuk Res. 2017;59:110–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Cervantes F, Dupriez B, Passamonti F, Vannucchi AM, Morra E, Reilly JT, et al. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol. 2012;30:2981–7.

    PubMed  Article  Google Scholar 

  67. Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL, et al. 3023 Mayo Clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019;94:599–610.

    PubMed  Article  Google Scholar 

  68. Hernandez-Boluda JC, Pereira A, Correa JG, Alvarez-Larran A, Ferrer-Marin F, Raya JM, et al. Performance of the myelofibrosis secondary to PV and ET-prognostic model (MYSEC-PM) in a series of 262 patients from the Spanish registry of myelofibrosis. Leukemia. 2018;32:553–5.

    CAS  PubMed  Article  Google Scholar 

  69. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Mesa R, Jamieson C, Bhatia R, Deininger MW, Gerds AT, Gojo I, et al. Myeloproliferative neoplasms, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14:1572–611.

    CAS  PubMed  Article  Google Scholar 

  71. Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126.

    CAS  PubMed  Article  Google Scholar 

  72. Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70 + v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv. 2019;3:83–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42.

    CAS  PubMed  Article  Google Scholar 

  74. Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126:790–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Newberry KJ, Patel K, Masarova L, Luthra R, Manshouri T, Jabbour E, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130:1125–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  78. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110:375–9.

    CAS  PubMed  Article  Google Scholar 

  80. Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    CAS  PubMed  Article  Google Scholar 

  81. Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.

    CAS  PubMed  Article  Google Scholar 

  82. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. P53 lesions in leukemic transformation. N Engl J Med. 2011;364:488–90.

    CAS  PubMed  Article  Google Scholar 

  83. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.

    CAS  PubMed  Article  Google Scholar 

  85. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Bose P, Verstovsek S, Naqvi K, Jabbour EJ, DiNardo CD, Alvarado Y et al. Phase 1/2 study of ruxolitinib (RUX) plus decitabine (DAC) in patients (PTS) with post-myeloproliferative neoplasm acute myeloid leukemia (post-MPN AML). Haemasphere. 2019;3(suppl 1):PF673.

    Google Scholar 

  87. Rampal RK, Mascarenhas J, Kosiorek HE, Bhave R, Hexner EO, Wang ES, et al. Efficacy of combined ruxolitinib and decitabine in patients with accelerated and blast-phase myeloproliferative neoplasms: results of a phase II study (MPN-RC 109 trial). Blood. 2018;132:3027.

    Article  Google Scholar 

  88. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the MD Anderson Cancer Center support grant P30 CA016672 from the National Cancer Institute (National Institutes of Health).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdan Verstovsek.

Ethics declarations

Conflict of interest

The authors report no conflicts relevant to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bose, P., Verstovsek, S. Mutational profiling in myelofibrosis: implications for management. Int J Hematol 111, 192–199 (2020). https://doi.org/10.1007/s12185-019-02758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02758-z

Keywords

  • Mutations
  • Myelofibrosis
  • JAK–STAT
  • Epigenetic
  • Splicing