International Journal of Hematology

, Volume 108, Issue 1, pp 76–84 | Cite as

T-cell-replete haploidentical stem cell transplantation using low-dose antithymocyte globulin in children with relapsed or refractory acute leukemia

  • Hideki Sano
  • Kazuhiro Mochizuki
  • Shogo Kobayashi
  • Yoshihiro Ohara
  • Masaki Ito
  • Tomoko Waragai
  • Nobuhisa Takahashi
  • Kazuhiko Ikeda
  • Hitoshi Ohto
  • Atsushi Kikuta
Original Article


We evaluated the efficacy and toxicity of T-cell-replete haploidentical stem cell transplantation (TCR-haploSCT) using low-dose antithymocyte globulin (ATG) in children with refractory/relapsed (R/R) acute leukemia. From October 2009 to April 2016, 39 consecutive patients with R/R acute leukemia who underwent TCR-haploSCT were included. At the time of TCR-haploSCT, 17 patients were in complete remission (CR), but 22 had active disease. Thirty-three patients received a myeloablative regimen and six received a reduced-intensity conditioning regimen. Graft-versus-host disease (GvHD) prophylaxis comprised tacrolimus, methotrexate, prednisolone, and low-dose ATG (thymoglobulin 2.5 mg/kg). Neutrophil engraftment (> 0.5 × 109/L) was 95% after a median of 13 days. The median follow-up period was 527 days, with mean 3-year overall and disease-free survival rates of 45.1% [standard deviation (SD), ± 8.5%) and 33.8% (SD, ± 7.9%), respectively. The cumulative incidence of acute GvHD was 73.0%, but that of grade III–IV acute GvHD was 34.1%. The 3-year cumulative incidences of relapse and transplant-related mortality were 50.3 and 15.9%, respectively. Age < 10 years at transplantation was associated with a better overall survival in the multivariate analysis. These data suggest that TCR-haploSCT using a low-dose ATG combined with the GvHD prophylaxis described here has a significant anti-leukemic activity, particularly in younger patients.


Acute leukemia Haploidentical hematopoietic stem cell transplantation Relapse Children Graft-versus-host disease 



Stem cell transplantation


Antithymocyte globulin


Refractory/relapsed acute leukemia




Graft-versus-host disease




Post-transplantation cyclophosphamide


Mixed lineage leukemia




Granulocyte-colony stimulating factor


Transplant-related mortality


Peripheral blood stem cells


Complete remission


FMS like tyrosine kinase- internal tandem duplication


Myeloid natural killer cell precursor leukemia


Acute lymphoblastic leukemia


Acute myeloid leukemia


Human leukocyte antigen


Epstein–Barr virus


Standard deviation



We wish to thank all the clinicians and nurses who helped to support the care of patients in this study. We also thank the technicians at the Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University Hospital, especially Mr. Satoshi Ono for his help with the HLA typing and Mr. Shunichi Saito for CD34+ and CD3+ cell assays. We would like to thank Editage (http://www.editage.ip) for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rubnitz JE, Inaba H. Childhood acute myeloid leukaemia. Br J Haematol. 2012;159:259–76.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28:2339–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376:2009–17.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakayama H, Tabuchi K, Tawa A, Tsukimoto I, Tsuchida M, Morimoto A, et al. Outcome of children with relapsed acute myeloid leukemia following initial therapy under the AML99 protocol. Int J Hematol. 2014;100:171–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol. 2005;131:579–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28:3730–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Balduzzi A, Valsecchi MG, Uderzo C, De Lorenzo P, Klingebiel T, Peters C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366:635–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Kobayashi S, Ito M, Sano H, Mochizuki K, Akaihata M, Waragai T, et al. T-cell-replete haploidentical stem cell transplantation is highly efficacious for relapsed and refractory childhood acute leukaemia. Transfus Med. 2014;24:305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Armitage JO. Bone marrow transplantation. N Engl J Med. 1994;330:827–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Anasetti C, Beatty PG, Storb R, Martin PJ, Mori M, Sanders JE, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29:79–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.PubMedGoogle Scholar
  13. 13.
    Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15:1767–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Rizzieri DA, Koh LP, Long GD, Gasparetto C, Sullivan KM, Horwitz M, et al. Partially matched, nonmyeloablative allogeneic transplantation: clinical outcomes and immune reconstitution. J Clin Oncol. 2007;25:690–7.CrossRefPubMedGoogle Scholar
  17. 17.
    O’Donnell PV, Luznik L, Jones RJ, Vogelsang GB, Leffell MS, Phelps M, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8:377–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Ikegame K, Yoshida T, Yoshihara S, Daimon T, Shimizu H, Maeda Y, et al. Unmanipulated haploidentical reduced-intensity stem cell transplantation using fludarabine, busulfan, low-dose antithymocyte globulin, and steroids for patients in non-complete remission or at high risk of relapse: a prospective multicenter phase I/II study in Japan. Biol Blood Marrow Transplant. 2015;21:1495–505.CrossRefPubMedGoogle Scholar
  19. 19.
    Mochizuki K, Kikuta A, Ito M, Sano H, Akaihata M, Kobayashi S, et al. Feasibility of tacrolimus, methotrexate, and prednisolone as a graft-versus-host disease prophylaxis in non-T-cell-depleted haploidentical hematopoietic stem cell transplantation for children. Clin Transplant. 2011;25:892–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.CrossRefGoogle Scholar
  21. 21.
    Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54.CrossRefGoogle Scholar
  22. 22.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Anasetti C, Amos D, Beatty PG, Appelbaum FR, Bensinger W, Buckner D, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic comparison. Biol Blood Marrow Transpl. 2011;17:821–30.CrossRefGoogle Scholar
  25. 25.
    Genestier L, Fournel S, Flacher M, Assossou O, Revillard JP, Bonnefoy-Berard N. Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood. 1998;91:2360–8.PubMedGoogle Scholar
  26. 26.
    Liu J, Xu LP, Bian Z, Chang YJ, Wang Y, Zhang XH, et al. Differential impact of two doses of antithymocyte globulin conditioning on lymphocyte recovery upon haploidentical hematopoietic stem cell transplantation. J Transl Med. 2015;13:391. Scholar
  27. 27.
    Weisdorf D, Zhang MJ, Arora M, Horowitz MM, Rizzo JD, Eapen M. Graft-versus-host disease induced graft-versus-leukemia effect: greater impact on relapse and disease-free survival after reduced intensity conditioning. Biol Blood Marrow Transpl. 2012;18:1727–33.CrossRefGoogle Scholar
  28. 28.
    O’Hare P, Lucchini G, Cummins M, Veys P, Potter M, Lawson S, et al. Allogeneic stem cell transplantation for refractory acute myeloid leukemia in pediatric patients: the UK experience. Bone Marrow Transpl. 2017. (e-pub ahead of print 20 February 2017).
  29. 29.
    Liu DH, Xu LP, Liu KY, Wang Y, Chen H, Han W, et al. Long-term outcomes of unmanipulated haploidentical HSCT for paediatric patients with acute leukaemia. Bone Marrow Transpl. 2013;48:1519–24.CrossRefGoogle Scholar
  30. 30.
    Sawada A, Shimizu M, Isaka K, Higuchi K, Mayumi A, Yoshimoto Y, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for advanced pediatric malignancies. Pediatr Hematol Oncol. 2014;31:754–64.CrossRefPubMedGoogle Scholar
  31. 31.
    Jaiswal SR, Chakrabarti A, Chatterjee S, Ray K, Chakrabarti S. Haploidentical transplantation in children with unmanipulated peripheral blood stem cell graft: the need to look beyond post-transplantation cyclophosphamide in younger children. Pediatr Transplant. 2016;20:675–82.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Hideki Sano
    • 1
  • Kazuhiro Mochizuki
    • 1
  • Shogo Kobayashi
    • 1
  • Yoshihiro Ohara
    • 1
  • Masaki Ito
    • 1
  • Tomoko Waragai
    • 1
  • Nobuhisa Takahashi
    • 1
  • Kazuhiko Ikeda
    • 2
  • Hitoshi Ohto
    • 2
  • Atsushi Kikuta
    • 1
  1. 1.Department of Pediatric OncologyFukushima Medical University HospitalFukushimaJapan
  2. 2.Department of Blood Transfusion and Transplantation ImmunologyFukushima Medical University HospitalFukushimaJapan

Personalised recommendations