International Journal of Hematology

, Volume 106, Issue 2, pp 258–265 | Cite as

MicroRNA-192 regulates cell proliferation and cell cycle transition in acute myeloid leukemia via interaction with CCNT2

  • Shun Ke
  • Rui-chao Li
  • Jun Lu
  • Fan-kai Meng
  • Yi-kuan Feng
  • Ming-hao FangEmail author
Original Article


MicroRNAs (miRNAs) are a class of small non-coding RNAs approximately 18–22 nucleotides in length, which play an important role in malignant transformation. The roles of miR-192 as an oncogene or tumor suppressor in solid tumors have been previously reported. However, little is known about the role of miR-192 in human acute myeloid leukemia. The results of the present study indicate that miR-192 is significantly downregulated in specimens from acute myeloid leukemia patients. Functional assays demonstrated that overexpression of miR-192 in NB4 and HL-60 cells significantly inhibited cell proliferation compared with that in control cells, and induced G0/G1 cell cycle arrest, cell differentiation, and apoptosis in vitro. Dual-luciferase reporter gene assays showed that miR-192 significantly suppressed the activity of a reporter gene containing the wild type 3′-UTR of CCNT2, but it did not suppress the activity of a reporter gene containing mutated 3′-UTR of CCNT2. QRT-PCR and Western blot assays showed that miR-192 significantly downregulated the expression of CCNT2 in human leukemia cells. Exogenous expression of CCNT2 attenuated the cell cycle arrest induced by miR-192 in NB4 and HL-60 cells. Collectively, miR-192 inhibits cell proliferation and induces G0/G1 cell cycle arrest in AML by regulating the expression of CCNT2.


miR-192 Acute myeloid leukemia Cell cycle CCNT2 



The authors thank the local doctors and the patients who participated in our study. The project was supported by the Hubei Provincial Natural Science Foundation of China (No. 2011CDD193).

Compliance with ethical standards

Conflicts of interest

The authors have declared no conflicts of interest.

Supplementary material

12185_2017_2232_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 13 kb)
12185_2017_2232_MOESM2_ESM.xlsx (8 kb)
Supplementary material 2 (XLSX 8 kb)


  1. 1.
    Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. New Engl j med. 1999;341:1051–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer. 2008;112:4–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.PubMedGoogle Scholar
  5. 5.
    Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–907.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI. miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett. 2013;334:211–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013;153:516–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, et al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 2014;33:5332–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Jin Y, Lu J, Wen J, Shen Y, Wen X. Regulation of growth of human bladder cancer by miR-192. Tumour Biol. 2015;36:3791–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Li S, Li F, Niu R, Zhang H, Cui A, An W, et al. Mir-192 suppresses apoptosis and promotes proliferation in esophageal aquamous cell caicinoma by targeting Bim. Int J Clinic Exp Pathol. 2015;8:8048–56.Google Scholar
  12. 12.
    Zhao C, Zhang J, Zhang S, Yu D, Chen Y, Liu Q, et al. Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep. 2013;30:276–84.PubMedGoogle Scholar
  13. 13.
    Chen Q, Ge X, Zhang Y, Xia H, Yuan D, Tang Q, et al. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep. 2014;31:1863–70.PubMedGoogle Scholar
  14. 14.
    Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, et al. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res. 2011;39:6669–78.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15:196–212.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998;12:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 2008;27:1907–18.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414:322–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Cottone G, Baldi A, Palescandolo E, Manente L, Penta R, Paggi MG, et al. Pkn is a novel partner of cyclin T2a in muscle differentiation. J Cell Physiol. 2006;207:232–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Simone C, Bagella L, Bellan C, Giordano A. Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene. 2002;21:4158–65.CrossRefPubMedGoogle Scholar
  21. 21.
    Dick FR, Armitage JO, Burns CP. Diagnostic concurrence in the subclassification of adult acute leukemia using French-American-British criteria. Cancer. 1982;49:916–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H, et al. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 2016;142:77–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Butrym A, Rybka J, Baczynska D, Tukiendorf A, Kuliczkowski K, Mazur G. Low expression of microRNA-204 (miR-204) is associated with poor clinical outcome of acute myeloid leukemia (AML) patients. J Exp Clinic Cancer Research. 2015;34:68.CrossRefGoogle Scholar
  24. 24.
    Jin J, Wang Y, Xu Y, Zhou X, Liu Y, Li X, et al. MicroRNA-144 regulates cancer cell proliferation and cell-cycle transition in acute lymphoblastic leukemia through the interaction of FMN2. J Gene Med 2016. doi: 10.1002/jgm.2898 Google Scholar
  25. 25.
    Shen JZ, Zhang YY, Fu HY, Wu DS, Zhou HR. Overexpression of microRNA-143 inhibits growth and induces apoptosis in human leukemia cells. Oncol Rep. 2014;31:2035–42.PubMedGoogle Scholar
  26. 26.
    Lu F, Zhang J, Ji M, Li P, Du Y, Wang H, et al. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol. 2014;45:383–92.PubMedGoogle Scholar
  27. 27.
    Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176–82.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Rommer A, Steinleitner K, Hackl H, Schneckenleithner C, Engelmann M, Scheideler M, et al. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer. 2013;13:364.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Feinberg-Gorenshtein G, Guedj A, Shichrur K, Jeison M, Luria D, Kodman Y, et al. MiR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS One. 2013;8:e78713.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C, et al. miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol. 2014;184:996–1009.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Shun Ke
    • 1
  • Rui-chao Li
    • 2
  • Jun Lu
    • 1
  • Fan-kai Meng
    • 3
  • Yi-kuan Feng
    • 1
  • Ming-hao Fang
    • 1
    Email author
  1. 1.Department of Emergency Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of General Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations