International Journal of Hematology

, Volume 106, Issue 2, pp 269–281 | Cite as

EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells

  • Akinori Yaguchi
  • Takeshi Ishibashi
  • Kazuki Terada
  • Hitomi Ueno-Yokohata
  • Yuya Saito
  • Junya Fujimura
  • Toshiaki Shimizu
  • Kentaro Ohki
  • Atsushi Manabe
  • Nobutaka KiyokawaEmail author
Original Article


ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3–4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.


EP300 ZNF384 GATA3 CD33 Transcription 



We thank Y. Katayama, K. Nakasato, and S. Tamura for their excellent assistance. This work was supported in part by a Health and Labour Sciences Research Grant (3rd-term comprehensive 10-year strategy for cancer control H22-011) and a Grant of the National Center for Child Health and Development (26-20) from the Ministry of Health, Labour and Welfare of Japan, Advanced research for medical products Mining Programme of the National Institute of Biomedical Innovation (NIBIO, 10-41, -42, -43, -44, -45), Tailor-made Medical Treatment Program (BioBank Japan: BBJ), and the Practical Research for Innovative Cancer Control from the Japan Agency for Medical Research and development, AMED.

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest regarding this study.

Supplementary material

12185_2017_2220_MOESM1_ESM.xlsx (376 kb)
Supplementary Table 1. Up-regulated pathways in EP300-ZNF384-expressing REH cells in comparison with Mock. Supplementary Table 2. High (A) and low (B) expression genes in wild-type ZNF384-expressing REH cells in comparison with Mock. Supplementary Table 3. Up- (A) and down- (B) regulated pathways in wild-type ZNF384-expressing REH cells in comparison with Mock. (XLSX 375 kb)


  1. 1.
    Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.CrossRefPubMedGoogle Scholar
  2. 2.
    Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stasevich I, Inglott S, Austin N, Chatters S, Chalker J, Addy D, et al. PAX5 alterations in genetically unclassified childhood Precursor B-cell acute lymphoblastic leukaemia. Br J Haematol. 2015. doi: 10.1111/bjh.13543 PubMedGoogle Scholar
  4. 4.
    Yasuda T, Tsuzuki S, Kawazu M, Hayakawa F, Kojima S, Ueno T, et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48:569–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Liu YF, Wang BY, Zhang WN, Huang JY, Li BS, Zhang M, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 2016;8:173–83.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C, von Palffy S, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gocho Y, Kiyokawa N, Ichikawa H, Nakabayashi K, Osumi T, Ishibashi T, Tokyo Children’s Cancer Study Group, et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015;29:2445–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Shago M, Abla O, Hitzler J, Weitzman S, Abdelhaleem M. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer. 2016;63:1915–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, et al. ZNF384-related fusion genes consist of a subgroup with a characteristic immunophenotype in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica. 2017;102:118–29.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Martini A, La Starza R, Janssen H, Bilhou-Nabera C, Corveleyn A, Somers R, et al. Recurrent rearrangement of the Ewing’s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Can Res. 2002;62:5408–12.Google Scholar
  11. 11.
    Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L, et al. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia. 2008;22:723–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamamoto K, Kawamoto S, Mizutani Y, Yakushijin K, Yamashita T, Nakamachi Y, et al. Mixed phenotype acute leukemia with t(12;17)(p13;q21)/TAF15-ZNF384 and other chromosome abnormalities. Cytogenet Genome Res. 2016;149:165–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Ping N, Qiu H, Wang Q, Dai H, Ruan C, Ehrentraut S, et al. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion. J Hematol Oncol. 2015;8:100.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grammatico S, Vitale A, La Starza R, Gorello P, Angelosanto N, Negulici AD, et al. Lineage switch from pro-B acute lymphoid leukemia to acute myeloid leukemia in a case with t(12;17)(p13;q11)/TAF15-ZNF384 rearrangement. Leuk Lymphoma. 2013;54:1802–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim J, Kim HS, Shin S, Lee ST, Choi JR. t(12;17)(p13;q12)/TAF15-ZNF384 rearrangement in acute lymphoblastic leukemia. Ann Lab Med. 2016;36:396–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nakamoto T, Yamagata T, Sakai R, Ogawa S, Honda H, Ueno H, et al. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol Cell Biol. 2000;20:1649–58.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thunyakitpisal P, Alvarez M, Tokunaga K, Onyia JE, Hock J, Ohashi N, et al. Cloning and functional analysis of a family of nuclear matrix transcription factors (NP/NMP4) that regulate type I collagen expression in osteoblasts. J Bone Miner Res. 2001;16:10–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Corveleyn A, Janssen H, Martini A, Somers R, Cools J, Marynen P. Cellular transformation of NIH3T3 fibroblasts by CIZ/NMP4 fusions. J Cell Biochem. 2005;94(6):1112–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Gao J, Chen YH, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol. 2015;4:28.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Landry DB, Engel JD, Sen R. Functional GATA-3 binding sites within murine CD8 alpha upstream regulatory sequences. J Exp Med. 1993;178:941–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996;384:474–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Heavey B, Charalambous C, Cobaleda C, Busslinger M. Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J. 2003;22:3887–97.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rosenfeld C, Goutner A, Choquet C, Venuat AM, Kayibanda B, Pico JL, et al. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature. 1977;267:841–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Ishibashi T, Yaguchi A, Terada K, Ueno-Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Banerjee A, Northrup D, Boukarabila H, Jacobsen SE, Allman D. Transcriptional repression of Gata3 is essential for early B cell commitment. Immunity. 2013;38:930–42.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen D, Zhang G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol. 2001;29:971–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Ku CJ, Hosoya T, Maillard I, Engel JD. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood. 2012;119:2242–51.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, et al. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol. 2013;14:1037–44.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Perez-Andreu V, Roberts KG, Harvey RC, Yang W, Cheng C, Pei D, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45:1494–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W, et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood. 2015;125:680–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fransecky L, Neumann M, Heesch S, Schlee C, Ortiz-Tanchez J, Heller S, et al. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL. J Hematol Oncol. 2016;9:95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Akinori Yaguchi
    • 1
    • 2
  • Takeshi Ishibashi
    • 1
    • 2
  • Kazuki Terada
    • 1
  • Hitomi Ueno-Yokohata
    • 1
  • Yuya Saito
    • 1
  • Junya Fujimura
    • 2
  • Toshiaki Shimizu
    • 2
  • Kentaro Ohki
    • 1
  • Atsushi Manabe
    • 3
  • Nobutaka Kiyokawa
    • 1
    Email author
  1. 1.Department of Pediatric Hematology and Oncology ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
  2. 2.Department of Pediatrics and Adolescent MedicineJuntendo University Graduate School of MedicineTokyoJapan
  3. 3.Department of PediatricsSt. Luke’s International HospitalTokyoJapan

Personalised recommendations