Skip to main content

Advertisement

Log in

Human MutT homologue 1 mRNA overexpression correlates to poor response of multiple myeloma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Human MutT homologue 1 (MTH1) is a human 8-oxo-dGTPase that eradicates oxidized bases in the nucleotide pool and DNA. MTH1 is critical for RAS-transformed cancer cell survival, whereas it is dispensable in normal cells and tissues. Here, we determined the expression of MTH1 in multiple myeloma (MM) cell lines and MM patients’ CD138 (+) cells and analyzed its potential clinical significance. We detected overexpression of MTH1 mRNA in three cell lines (RPMI 8226, U266, and H929). MTH1 mRNA expression of RPMI8226 was higher than that of U266 and H929. In 59 MM patients, overexpression of MTH1 mRNA was detected in 27 cases (45.7%). MTH1 mRNA expression was significantly higher in ISS III stage (P < 0.001) and refractory relapse patients (P < 0.05). MTH1 mRNA expression in patients achieving less than partial response (PR) was significantly higher than in those achieving PR and better in newly diagnosed MM (P = 0.04). In conclusion, higher MTH1 may be associated with later disease stage and advanced disease progression. MTH1 mRNA overexpression is also correlated poor efficacy of bortezomib in newly diagnosed MM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakabeppu Y. Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res. 2001;477(1–2):59–70.

    Article  CAS  PubMed  Google Scholar 

  2. Malins DC, Haimanot R. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 1991;51(19):5430–2.

    CAS  PubMed  Google Scholar 

  3. Okamoto K, Toyokuni S, Kim WJ, Ogawa O, Kakehi Y, Arao S, Hiai H, Yoshida O. Overexpression of human mutT homologue gene messenger RNA in renal-cell carcinoma: evidence of persistent oxidative stress in cancer. Int J Cancer. 1996; 65(4):437–41.

  4. Koketsu S, Watanabe T, Nagawa H. Expression of DNA repair protein: MYH, NTH1, and MTH1 in colorectal cancer. Hepatogastroenterology. 2004;51(57):638–42.

    CAS  PubMed  Google Scholar 

  5. Kennedy CH, Pass HI, Mitchell JB. Expression of human MutT homologue (hMTH1) protein in primary non-small-cell lung carcinomas and histologically normal surrounding tissue. Free Radic Biol Med. 2003;34(11):1447–57.

    Article  CAS  PubMed  Google Scholar 

  6. Speina E, Arczewska KD, Gackowski D, Zielinska M, Siomek A, Kowalewski J, et al. Contribution of hMTH1 to the maintenance of 8-oxoguanine levels in lung DNA of non-small-cell lung cancer patients. J Natl Cancer Inst. 2005;97(5):384–95.

    Article  CAS  PubMed  Google Scholar 

  7. Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 2014;508(7495):215–21.

    Article  CAS  PubMed  Google Scholar 

  8. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA. Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene. 2011;30(12):1489–96.

    Article  CAS  PubMed  Google Scholar 

  9. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature. 2014;508(7495):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saleh A, Gokturk C, Warpman-Berglund U, Helleday T, Granelli I. Development and validation of method for TH588 and TH287, potent MTH1 inhibitors and new anti-cancer agents, for pharmacokinetic studies in mice plasma. J Pharm Biomed Anal. 2015;104:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Walsh AB, Dhanasekaran M, Bar-Sagi D, Kumar CC. SCH 51344-induced reversal of RAS-transformation is accompanied by the specific inhibition of the RAS and RAC-dependent cell morphology pathway. Oncogene. 1997;15(21):2553–60.

    Article  CAS  PubMed  Google Scholar 

  12. Pulte D, Gondos A, Brenner H. Improvement in survival of older adults with multiple myeloma: results of an updated period analysis of SEER data. Oncologist. 2011;16(11):1600–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chng WJ, Gonzalez-Paz N, Price-Troska T, Jacobus S, Rajkumar SV, Oken MM, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22(12):2280–4.

    Article  CAS  PubMed  Google Scholar 

  14. Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat. 2015;18:18–35.

    Article  PubMed  Google Scholar 

  15. Mikhael JR, Dingli D, Roy V, Reeder CB, Buadi FK, Hayman SR, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76.

    Article  PubMed  Google Scholar 

  16. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387(3):147–63.

    Article  CAS  PubMed  Google Scholar 

  17. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995; 358(1):1–3.

  18. Kennedy CH, Cueto R, Belinsky SA, Lechner JF, Pryor WA. Overexpression of hMTH1 mRNA: a molecular marker of oxidative stress in lung cancer cells. FEBS Lett. 1998;429(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  19. Matsui A, Ikeda T, Enomoto K, Hosoda K, Nakashima H, Omae K, et al. Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett. 2000;151(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  20. Takama F, Kanuma T, Wang D, Nishida JI, Nakabeppu Y, Wake N, et al. Mutation analysis of the hMTH1 gene in sporadic human ovarian cancer. Int J Oncol. 2000;17(3):467–71.

    CAS  PubMed  Google Scholar 

  21. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol. 2007;9(5):493–505.

    Article  CAS  PubMed  Google Scholar 

  22. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 1999;274(12):7936–40.

    Article  CAS  PubMed  Google Scholar 

  23. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 2007;21(1):43–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao R, Singh R, Kaul Z, Kaul SC, Wadhwa R. Targeting of DNA damage signaling pathway induced senescence and reduced migration of cancer cells. J Gerontol A Biol Sci Med Sci. 2015;70(6):701–13.

    Article  PubMed  Google Scholar 

  25. Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64(10):3580–5.

    Article  CAS  PubMed  Google Scholar 

  26. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol. 2009;29(16):4495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rai P, Onder TT, Young JJ, McFaline JL, Pang B, Dedon PC, et al. Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc Natl Acad Sci USA. 2009;106(1):169–74.

    Article  PubMed  Google Scholar 

  29. Nooka AK, Lonial S. New targets and new agents in high-risk multiple myeloma. Am Soc Clin Oncol Educ Book. 2016;35:e431–41.

    Article  PubMed  Google Scholar 

  30. Neri A, Murphy JP, Cro L, Ferrero D, Tarella C, Baldini L, et al. Ras oncogene mutation in multiple myeloma. J Exp Med. 1989;170(5):1715–25.

    Article  CAS  PubMed  Google Scholar 

  31. Corradini P, Ladetto M, Voena C, Palumbo A, Inghirami G, Knowles DM, et al. Mutational activation of N- and K-ras oncogenes in plasma cell dyscrasias. Blood. 1993;81(10):2708–13.

    CAS  PubMed  Google Scholar 

  32. Liu P, Leong T, Quam L, Billadeau D, Kay NE, Greipp P, et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood. 1996;88(7):2699–706.

    CAS  PubMed  Google Scholar 

  33. Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23.

    Article  CAS  PubMed  Google Scholar 

  34. White-Gilbertson S, Hua Y, Liu B. The role of endoplasmic reticulum stress in maintaining and targeting multiple myeloma: a double-edged sword of adaptation and apoptosis. Front Genet. 2013;4:109.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Field-Smith A, Morgan GJ, Davies FE. Bortezomib (Velcadetrade mark) in the treatment of multiple myeloma. Ther Clin Risk Manag. 2006;2(3):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mele G, Giannotta A, Pinna S, Loseto G, Coppi MR, Brocca CM, et al. Frail elderly patients with relapsed-refractory multiple myeloma: efficacy and toxicity profile of the combination of bortezomib, high-dose dexamethasone, and low-dose oral cyclophosphamide. Leuk Lymphoma. 2010;51(5):937–40.

    Article  CAS  PubMed  Google Scholar 

  37. Goel A, Spitz DR, Weiner GJ. Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma. J Cell Biochem. 2012;113(2):419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weniger MA, Rizzatti EG, Perez-Galan P, Liu D, Wang Q, Munson PJ, et al. Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res. 2011;17(15):5101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fink EE, Mannava S, Bagati A, Bianchi-Smiraglia A, Nair JR, Moparthy K, et al. Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia. 2016;30(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  40. Yin L, Kufe T, Avigan D, Kufe D. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood. 2014;123(19):2997–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, et al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther. 2008;7(6):1494–505.

    Article  CAS  PubMed  Google Scholar 

  42. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S. The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol. 2007;139(3):385–97.

    Article  CAS  PubMed  Google Scholar 

  43. Helleday T. Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Ann Oncol. 2014; 25(7):1253–5.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (General Program, Grant No. 81172252) and the Capital of Clinical Characteristics and the Applied Research Fund of China (Grant No. Z131107002213146).

The authors gratefully acknowledge the co-investigators who participated in this study. The corresponding author Wenming Chen designed the research study and reviewed the paper. Huixing Zhou performed the research and wrote the paper. Huixing Zhou and Yuan Jian analyzed the data. Yun Leng, Nian Liu, Ying Tian, Guorong Wang, Guangzhong Yang, and Wen Gao contributed essential patients’ samples collection and reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Chen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2016_2139_MOESM1_ESM.tif

Supplementary Fig. 1 MTH1 mRNA expression in patients’ CD138(-) cells and normal mononuclear cells (P > 0.05) (TIFF 56 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Jian, Y., Leng, Y. et al. Human MutT homologue 1 mRNA overexpression correlates to poor response of multiple myeloma. Int J Hematol 105, 318–325 (2017). https://doi.org/10.1007/s12185-016-2139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2139-3

Keywords

Navigation