Skip to main content

Advertisement

Log in

Rapamycin restores p14, p15 and p57 expression and inhibits the mTOR/p70S6K pathway in acute lymphoblastic leukemia cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of rapamycin and its underlying mechanisms on acute lymphoblastic leukemia (ALL) cells. We found that the p14, p15, and p57 genes were not expressed in ALL cell lines (Molt-4 and Nalm-6) and adult ALL patients, whereas mTOR, 4E-BP1, and p70S6K were highly expressed. In Molt-4 and Nalm-6 cells exposed to rapamycin, cell viability decreased and the cell cycle was arrested at the G1/S phase. Rapamycin restored p14, p15, and p57 gene expression through demethylation of the promoters of these genes. As expected, rapamycin also increased p14 and p15 protein expression in both Molt-4 and Nalm-6 cells, as well as p57 protein expression in Nalm-6 cells. Rapamycin additionally decreased mTOR and p70S6K mRNA levels, as well as p70S6K and p-p70S6K protein levels. However, depletion of mTOR by siRNA did not alter the expression and promoter methylation states of p14, p15, and p57. These results indicate that the inhibitory effect of rapamycin may be due mainly to increased p14, p15, and p57 expression via promoter demethylation and decreased mTOR and p70S6K expression in ALL cell lines. These results suggest a potential role for rapamycin in the treatment of adult ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101:2788–801.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Manero G, Thomas DA. Salvage therapy for refractory or relapsed acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2001;15:163–205.

    Article  CAS  PubMed  Google Scholar 

  3. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Yang Q, Yu H, Wu L, Zhao Y, Zhang C, et al. LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget. 2014;5:788–801.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kelly KR, Rowe JH, Padmanabhan S, Nawrocki ST, Carew JS. Mammalian target of rapamycin as a target in hematological malignancies. Target Oncol. 2011;6:53–61.

    Article  PubMed  Google Scholar 

  6. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–45.

    Article  CAS  PubMed  Google Scholar 

  7. Herbert TP, Tee AR, Proud CG. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem. 2002;277:11591–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bahrami BF, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol. 2014;67:1019–25.

    Article  Google Scholar 

  9. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64.

    Article  PubMed Central  PubMed  Google Scholar 

  10. García-Morales P, Hernando E, Carrasco-García E, Menéndez-Gutierrez MP, Saceda M, Martínez-Lacaci I. Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells. Mol Cancer Ther. 2006;5:2172–81.

    Article  PubMed  Google Scholar 

  11. Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F, et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood. 2003;101:278–85.

    Article  CAS  PubMed  Google Scholar 

  12. Williams RT, Sherr CJ. The INK4-ARF (CDKN2A/B) locus in hematopoiesis and bcr-abl-induced leukemias. Cold Spring Harb Symp Quant Biol. 2008;73:461–7.

    Article  CAS  PubMed  Google Scholar 

  13. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wolff L, Bies J. p15Ink4b functions in determining hematopoietic cell fates: implications for its role as a tumor suppressor. Blood Cells Mol Dis. 2013;50:227–31.

    Article  CAS  PubMed  Google Scholar 

  15. Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, et al. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res. 2011;9:1269–84.

    Article  CAS  PubMed  Google Scholar 

  16. Paul E, Paul E, Uggla B, Deneberg S, Bengtzen S, Hermansson M, et al. Low p14ARF expression in de novo acute myeloid leukemia with normal karyotype is associated with poor survival. Leuk Lymphoma. 2009;50:1512–8.

    Article  CAS  PubMed  Google Scholar 

  17. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G, et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood. 2004;104:2492–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bueso-Ramos C, Xu Y, McDonnell TJ, Brisbay S, Pierce S, Kantarjian H, et al. Protein expression of a triad of frequently methylated genes, p73, p57Kip2, and p15, has prognostic value in adult acute lymphocytic leukemia independently of its methylation status. J Clin Oncol. 2005;23:3932–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wong IH, Ng MH, Huang DP, Lee JC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood. 2000;95:1942–9.

    CAS  PubMed  Google Scholar 

  20. Li Y, Nagai H, Ohno T, Yuge M, Hatano S, Ito E, et al. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood. 2002;100:2572–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kohno T, Yamada Y, Tawara M, Takasaki Y, Kamihira S, Tomonaga M, et al. Inactivation of p14ARF as a key event for the progression of adult T cell leukemia/lymphoma. Leuk Res. 2007;31:1625–32.

    Article  PubMed  Google Scholar 

  22. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  23. Menon S, Manning BD. Common corruption of the mTOR signaling network in human tumors. Oncogene. 2008;27(Suppl 2):S43–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M, et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell. 2009;16:439–46.

    Article  CAS  PubMed  Google Scholar 

  25. Kwon HK, Bae GU, Yoon JW, Kim YK, Lee HY, Lee HW, et al. Constitutive activation of p70S6K in cancer cells. Arch Pharm Res. 2002;25:685–90.

    Article  CAS  PubMed  Google Scholar 

  26. Vispé S, Deroide A, Davoine E, Desjobert C, Lestienne F, Fournier L, et al. Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2′-deoxycytidine in human leukemic KG1 cells. Oncotarget. 2015;6:15265–82.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tasian SK, Teachey DT, Rheingold SR. Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front Oncol. 2014;4:108.

    PubMed Central  PubMed  Google Scholar 

  28. Márk Á, Hajdu M, Váradi Z, Sticz TB, Nagy N, Csomor J, et al. Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease–—a combined tissue microarray, in vitro and in vivo study. BMC Cancer. 2013;13:250.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tian F, Dong L, Zhou Y, Shao Y, Li W, Zhang H, et al. Rapamycin-induced apoptosis in HGF-stimulated lens epithelial cells by AKT/mTOR, ERK and JAK2/STAT3 pathways. Int J Mol Sci. 2014;15:13833–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li J, Xue L, Hao H, Li R, Luo J. Rapamycin combined with celecoxib enhanced antitumor effects of mono treatment on chronic myelogenous leukemia cells through downregulating mTOR pathway. Tumour Biol. 2014;35:6467–74.

    Article  CAS  PubMed  Google Scholar 

  31. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 1997;57:837–41.

    CAS  PubMed  Google Scholar 

  32. Shen L, Toyota M, Kondo Y, Obata T, Daniel S, Pierce S, et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood. 2003;101:4131–6.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Manero G, Bueso-Ramos C, Daniel J, Williamson J, Kantarjian HM, Issa JP. DNA methylation patterns at relapse in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8:1897–903.

    CAS  PubMed  Google Scholar 

  34. Hagiwara K, Li Y, Kinoshita T, Kunishma S, Ohashi H, Hotta T, et al. Aberrant DNA methylation of the p57KIP2 gene is a sensitive biomarker for detecting minimal residual disease in diffuse large B cell lymphoma. Leuk Res. 2010;34:50–4.

    Article  CAS  PubMed  Google Scholar 

  35. Yang H, Kadia T, Xiao L, Bueso-Ramos CE, Hoshino K, Thomas DA, et al. Residual DNA methylation at remission is prognostic in adult Philadelphia chromosome-negative acute lymphocytic leukemia. Blood. 2009;113:1892–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood. 2012;119:5201–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Burke MJ, Lamba JK, Pounds S, Cao X, Ghodke-Puranik Y, Lindgren BR, et al. A therapeutic trial of decitabine and vorinostat in combination with chemotherapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2014;89:889–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tomasoni R, Basso V, Pilipow K, Sitia G, Saccani S, Agresti A, et al. Rapamycin-sensitive signals control TCR/CD28-driven Ifng, Il4 and Foxp3 transcription and promoter region methylation. Eur J Immunol. 2011;41:2086–96.

    Article  CAS  PubMed  Google Scholar 

  39. Sun D, Toan X, Zhang Y, Chen Y, Lu R, Wang X, et al. Mammalian target of rapamycin pathway inhibition enhances the effects of 5-aza-dC on suppressing cell proliferation in human gastric cancer cell lines. Sci China C Life Sci. 2008;51:640–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng J, Hudder A, Zukowski K, Novak RF. Rapamycin sensitizes Akt inhibition in malignant human breast epithelial cells. Cancer Lett. 2010;296:74–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Daniel C, Wennhold K, Kim HJ, von Boehmer H. Enhancement of antigen-specific Treg vaccination in vivo. Proc Natl Acad Sci USA. 2010;107:16246–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cheng ZY, Guo XL, Yang XY, Niu ZY, Li SH, Wang SY, et al. PTEN and rapamycin inhibiting the growth of K562 cells through regulating mTOR signaling pathway. J Exp Clin Cancer Res. 2008;27:87.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chiarini F, Falà F, Tazzari PL, Ricci F, Astolfi A, Pession A, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69:3520–8.

    Article  CAS  PubMed  Google Scholar 

  44. Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 2006;66:6589–97.

    Article  CAS  PubMed  Google Scholar 

  45. Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ. Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol. 2006;169:2171–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gu L, Zhou C, Liu H, Gao J, Li Q, Mu D, et al. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis. J Exp Clin Cancer Res. 2010;29:150.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Brown VI, Fang J, Alcorn K, Barr R, Kim JM, Wasserman R, et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Natl Acad Sci USA. 2003;100:15113–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang Z, Xu F, Yuan N, Niu Y, Lin W, Cao Y, et al. Rapamycin inhibits pre-B acute lymphoblastic leukemia cells by downregulating DNA and RNA polymerases. Leuk Res. 2014;38:940–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S, et al. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J. 2005;19:960–2.

    CAS  PubMed  Google Scholar 

  50. Yang X, He G, Gong Y, Zheng B, Shi F, Shi R, et al. Mammalian target of rapamycin inhibitor rapamycin enhances anti-leukemia effect of imatinib on Ph+ acute lymphoblastic leukemia cells. Eur J Haematol. 2014;92:111–20.

    Article  CAS  PubMed  Google Scholar 

  51. Altman JK, Platanias LC. Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Curr Opin Hematol. 2008;15:88–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fenglin Cao from the Institute of Hematology and Oncology (Heilongjiang Province) for providing technical assistance. We also thank Dr. Yinchang Mi from the Institute of Hematology and Blood Disease Hospital of the Chinese Academy of Medical Sciences and Peking Union Medical College for providing the Molt-4 and Nalm-6 cell lines. This research was supported by the Ph.D. Programs Foundation of the Ministry of Education of China (20132307110022), the Science and Technology project of Heilongjiang Province (GC12C303-4), the Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (LCO7C22), the Application Technology Research and Development Project of the Harbin Science and Technology Bureau (2014RFQGJ145), and the Science Foundation of the First Affiliated Hospital at Harbin Medical University (2013B14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Kong, X., Cui, G. et al. Rapamycin restores p14, p15 and p57 expression and inhibits the mTOR/p70S6K pathway in acute lymphoblastic leukemia cells. Int J Hematol 102, 558–568 (2015). https://doi.org/10.1007/s12185-015-1858-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1858-1

Keywords

Navigation