Skip to main content
Log in

Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Recent studies have reported that mesenchymal stromal cells (MSCs) migrate to areas of inflammation and suppress adverse immune reactions. Bone marrow (BM)-derived MSCs have been successfully used in patients with acute graft versus host disease (GVHD), but the harvesting of BM carries certain risks for the donor. To circumvent these, we obtained MSCs from Wharton’s jelly (WJ) derived from umbilical cord and investigated their potential for immunosuppression. In a mixed lymphocyte reaction (MLR), responder T cell proliferation triggered by allogeneic dendritic cells was inhibited efficiently by WJ-MSCs derived from the same donor of responder cells or those from a third party donor. These inhibitory effects were reversed in a dose-dependent manner in the presence of 1-methyl-DL-tryptophan, an inhibitor of the soluble factor indoleamine 2, 3-dioxygenase (IDO). Immunosuppression by WJ-MSCs was also attenuated by blocking cell–cell contact between WJ-MSCs and responder T cells using a Transwell chamber. Moreover, IDO gene expression was induced in both WJ- and BM-MSCs by inflammatory cytokine IFN-γ, but HLA-DR was expressed in BM-MSCs and not in WJ-MSCs upon stimulation by a relatively low concentration of IFN-γ. These results indicate that WJ-MSCs exert their immunosuppressive effects by cell–cell contact with activated T cells and in part through IDO, and suggest the need for cells rather than soluble factors secreted from MSCs to achieve immunosuppressive therapy in severe cases of GVHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1-MT:

1-Methyl-dl-tryptophan

BM:

Bone marrow

CB:

Cord blood

CFSE:

Carboxyfluorescein diacetate, succinimidyl ester

DC:

Dendritic cell

GVHD:

Graft versus host disease

IDO:

Indoleamine 2, 3-dioxygenase

MNC:

Mononuclear cell

MSC:

Mesenchymal stromal cell

UC:

Umbilical cord

WJ:

Wharton’s jelly

References

  1. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol. 2009;90:261–9.

    Article  PubMed  Google Scholar 

  2. He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, et al. Stage-specific embryonic antigen 4 in Wharton’s jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency. Tissue Eng Part A. 2014;20:1314–24.

    Article  CAS  PubMed  Google Scholar 

  3. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    Article  CAS  PubMed  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11:377–91.

    Article  CAS  PubMed  Google Scholar 

  6. Bernardo ME, Pagliara D, Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant. 2012;47:164–71.

    Article  CAS  PubMed  Google Scholar 

  7. Caimi PF, Reese J, Lee Z, Lazarus HM. Emerging therapeutic approaches for multipotent mesenchymal stromal cells. Curr Opin Hematol. 2010;17:505–13.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Muroi K, Miyamura K, Ohashi K, Murata M, Eto T, Kobayashi N, et al. Unrelated allogeneic bone marrow-derived mesenchymal stem cells for steroid-refractory acute graft-versus-host disease: a phase I/II study. Int J Hematol. 2013;98:206–13.

    Article  CAS  PubMed  Google Scholar 

  9. Yang SH, Park MJ, Yoon IH, Kim SY, Hong SH, Shin JY, et al. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med. 2009;41:315–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Agata H, Asahina I, Watanabe N, Ishii Y, Kubo N, Ohshima S, et al. Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A. 2010;16:663–73.

    Article  CAS  PubMed  Google Scholar 

  11. Girdlestone J, Limbani VA, Cutler AJ, Navarrete CV. Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions. Cytotherapy. 2009;11:738–48.

    Article  CAS  PubMed  Google Scholar 

  12. Ennis J, Gotherstrom C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy. 2008;10:174–81.

    Article  CAS  PubMed  Google Scholar 

  13. Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20:655–67.

    Article  PubMed  Google Scholar 

  14. Wang D, Chen K, Du WT, Han ZB, Ren H, Chi Y, et al. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res. 2010;316:2414–23.

    Article  CAS  PubMed  Google Scholar 

  15. Kikuchi-Taura A, Taguchi A, Kanda T, Inoue T, Kasahara Y, Hirose H, et al. Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy. 2012;14:441–50.

    Article  CAS  PubMed  Google Scholar 

  16. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26:2865–74.

    Article  CAS  PubMed  Google Scholar 

  17. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6:195–202.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 2010;5:e9016.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Miettinen JA, Pietila M, Salonen RJ, Ohlmeier S, Ylitalo K, Huikuri HV, et al. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture. Exp Cell Res. 2011;317:791–801.

    Article  CAS  PubMed  Google Scholar 

  21. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846–57.

    Article  CAS  PubMed  Google Scholar 

  22. Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol. 2008;36:350–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, van Griensven M, et al. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev. 2011;20:2115–26.

    Article  CAS  PubMed  Google Scholar 

  24. Technau A, Froelich K, Hagen R, Kleinsasser N. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy. 2011;13:310–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Health, Labor and Welfare and the Ministry of Education, Culture, Sports, Science and Technology of Japan (H26-Regeneration-010). The authors thank Ms. Y. Yuzawa and Y. Enomoto for their technical support, as well as the staff at the NTT Medical Center Hospital (Tokyo) for assistance with the collection of UC tissue and CB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokiko Nagamura-Inoue.

Ethics declarations

Conflict of interest

The authors have no financial interest/relationships with financial interest relating to the topic of this article have been declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2015_1844_MOESM1_ESM.tif

Supplementary material 1 (TIFF 80 kb) Supplementary Fig. 1. Cell number of responder cells (R) in MLR with or without Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs). The responder cells were counted by trypanblue staining in indicated conditions. Left column indicates R + stimulator cells (allogeneic DCs); middle column; R + stimulator cells +WJ-MSCs; and right column; R only. 1; Peripheral blood derived MNCs as responder cells, 2 to 4; Cord blood derived MNCs as responder cells

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Nagamura-Inoue, T., Takahashi, A. et al. Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro. Int J Hematol 102, 368–378 (2015). https://doi.org/10.1007/s12185-015-1844-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1844-7

Keywords

Navigation