Skip to main content
Log in

Gene expression profiling of diffuse large B-Cell lymphomas supervised by CD5 expression

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

CD5-positive (CD5+) diffuse large B-cell lymphoma (DLBCL) has a poor prognosis and high incidence of central nervous system (CNS) relapse, even in the rituximab era. To determine the gene expression profile of CD5+ DLBCL, total RNA from 90 patients with DLBCL, including 33 CD5+ DLBCL and 57 CD5-negative (CD5) DLBCL patients, was examined using Agilent human oligo microarrays. These cases were separated into 78 activated B-cell-like (ABC) DLBCLs and 12 germinal center B-cell-like (GCB) DLBCLs. All cases of CD5+ DLBCL were classified as ABC DLBCLs. The classifier based on gene expression used in a supervised analysis correctly identified CD5 expression in the DLBCL and ABC DLBCL samples. The gene most relevant to CD5 expression was SH3BP5. Enriched GO categories in the CD5+ ABC DLBCL signature gene set included multicellular organismal signaling, transmission of nerve impulse, and synaptic transmission. The present study, which includes the largest reported number of patients with CD5+ DLBCL, confirmed that most CD5+ DLBCLs are ABC DLBCLs, suggesting that therapeutic strategies for ABC DLBCL may be effective for the treatment of CD5+ DLBCL. Our CD5+ ABC DLBCL signature gene set may provide insights into the cause of the high frequency of CNS relapse in CD5+ DLBCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, et al. De novo CD5 + diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood. 2002;99:815–21.

    Article  CAS  PubMed  Google Scholar 

  3. Miyazaki K, Yamaguchi M, Suzuki R, Kobayashi Y, Maeshima AM, Niitsu N, et al. CD5-positive diffuse large B-cell lymphoma: a retrospective study in 337 patients treated by chemotherapy with or without rituximab. Ann Oncol. 2011;22:1601–7.

    Article  CAS  PubMed  Google Scholar 

  4. de Jong D, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Lee A, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications–a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2007;25:805–12.

    Article  PubMed  Google Scholar 

  5. Boehme V, Zeynalova S, Kloess M, Loeffler M, Kaiser U, Pfreundschuh M, et al. Incidence and risk factors of central nervous system recurrence in aggressive lymphoma–a survey of 1693 patients treated in protocols of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann Oncol. 2007;18:149–57.

    Article  CAS  PubMed  Google Scholar 

  6. Hollender A, Kvaloy S, Nome O, Skovlund E, Lote K, Holte H. Central nervous system involvement following diagnosis of non-Hodgkin’s lymphoma: a risk model. Ann Oncol. 2002;13:1099–107.

    Article  CAS  PubMed  Google Scholar 

  7. Feugier P, Virion JM, Tilly H, Haioun C, Marit G, Macro M, et al. Incidence and risk factors for central nervous system occurrence in elderly patients with diffuse large-B-cell lymphoma: influence of rituximab. Ann Oncol. 2004;15:129–33.

    Article  CAS  PubMed  Google Scholar 

  8. Tilly H, Lepage E, Coiffier B, Blanc M, Herbrecht R, Bosly A, et al. Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood. 2003;102:4284–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein SH, Unger JM, Leblanc M, Friedberg J, Miller TP, Fisher RI. Natural history of CNS relapse in patients with aggressive non-Hodgkin’s lymphoma: a 20-year follow-up analysis of SWOG 8516—the Southwest Oncology Group. J Clin Oncol. 2009;27:114–9.

    Article  PubMed  Google Scholar 

  10. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi M, Nakamura N, Suzuki R, Kagami Y, Okamoto M, Ichinohasama R, et al. De novo CD5 + diffuse large B-cell lymphoma: results of a detailed clinicopathological review in 120 patients. Haematologica. 2008;93:1195–202.

    Article  PubMed  Google Scholar 

  12. Kobayashi T, Yamaguchi M, Kim S, Morikawa J, Ogawa S, Ueno S, et al. Microarray reveals differences in both tumors and vascular specific gene expression in de novo CD5 + and CD5- diffuse large B-cell lymphomas. Cancer Res. 2003;63:60–6.

    CAS  PubMed  Google Scholar 

  13. Suguro M, Tagawa H, Kagami Y, Okamoto M, Ohshima K, Shiku H, et al. Expression profiling analysis of the CD5 + diffuse large B-cell lymphoma subgroup: development of a CD5 signature. Cancer Sci. 2006;97:868–74.

    Article  CAS  PubMed  Google Scholar 

  14. Gascoyne RD, Dave S, Zettl A, Bea S, Chan WC, Rosenwald A, et al. Gene expression microarray analysis of De Novo CD5+ Diffuse Large B-Cell Lymphoma (LLMPP Study): a distinct entity? Blood. 2003;102:178a.

    Article  Google Scholar 

  15. Tagawa H, Tsuzuki S, Suzuki R, Karnan S, Ota A, Kameoka Y, et al. Genome-wide array-based comparative genomic hybridization of diffuse large B-cell lymphoma: comparison between CD5-positive and CD5-negative cases. Cancer Res. 2004;64:5948–55.

    Article  CAS  PubMed  Google Scholar 

  16. Tagawa H, Suguro M, Tsuzuki S, Matsuo K, Karnan S, Ohshima K, et al. Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood. 2005;106:1770–7.

    Article  CAS  PubMed  Google Scholar 

  17. Oka K, Ohno T, Kita K, Yamaguchi M, Takakura N, Nishii K, et al. PRAD1 gene over-expression in mantle-cell lymphoma but not in other low-grade B-cell lymphomas, including extranodal lymphoma. Br J Haematol. 1994;86:786–91.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  19. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359:2313–23.

    Article  CAS  PubMed  Google Scholar 

  20. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113:6069–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose JM, et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29:690–7.

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, Pileri SA, Malik F, Macon WR, et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype. Cancer. 2011;117:5058–66.

    Article  CAS  PubMed  Google Scholar 

  23. Vitolo U, Chiappella A, Franceschetti S, Carella AM, Baldi I, Inghirami G, et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 2014;15:730–7.

    Article  CAS  PubMed  Google Scholar 

  24. Nowakowski GS, LaPlant B, Macon WR, Reeder CB, Foran JM, Nelson GD, et al. Lenalidomide Combined With R-CHOP Overcomes Negative Prognostic Impact of Non-Germinal Center B-Cell Phenotype in Newly Diagnosed Diffuse Large B-Cell Lymphoma: a Phase II Study. J Clin Oncol. 2015;33:251–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson WH, Dunleavy K, Pittaluga S, Hegde U, Grant N, Steinberg SM, et al. Phase II study of dose-adjusted EPOCH and rituximab in untreated diffuse large B-cell lymphoma with analysis of germinal center and post-germinal center biomarkers. J Clin Oncol. 2008;26:2717–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, et al. Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Proc Natl Acad Sci U S A. 1999;96:6341–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228:58–73.

    Article  CAS  PubMed  Google Scholar 

  28. Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, et al. Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Inform. 2007;3:399–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Matsushita M, Yamadori T, Kato S, Takemoto Y, Inazawa J, Baba Y, et al. Identification and characterization of a novel SH3-domain binding protein, Sab, which preferentially associates with Bruton’s tyrosine kinase (BtK). Biochem Biophys Res Commun. 1998;245:337–43.

    Article  CAS  PubMed  Google Scholar 

  30. Aalipour A, Advani RH. Bruton’s tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: focus on ibrutinib. Ther Adv Hematol. 2014;5:121–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang Z, Wang D, Sun T, Xu J, Chiang HC, Shin W, et al. The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses. J Neurosci. 2013;33:9169–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bao J, Talmage DA, Role LW, Gautier J. Regulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins. Development. 2000;127:425–35.

    CAS  PubMed  Google Scholar 

  33. Aoyama M, Ozaki T, Inuzuka H, Tomotsune D, Hirato J, Okamoto Y, et al. LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Cancer Res. 2005;65:4587–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid (21-6-3) for Cancer Research from the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science, and Technology (22790909), the National Cancer Center Research and Development Fund (23-A-17, 26-A-4), and the Health Labor Sciences Research Grant from the Ministry of Health Labor and Welfare in Japan.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kana Miyazaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (xlsx 30 kb)

ESM2 (xlsx 16 kb)

ESM3 (xlsx 28 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, K., Yamaguchi, M., Imai, H. et al. Gene expression profiling of diffuse large B-Cell lymphomas supervised by CD5 expression. Int J Hematol 102, 188–194 (2015). https://doi.org/10.1007/s12185-015-1812-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1812-2

Keywords

Navigation