Advertisement

International Journal of Hematology

, Volume 102, Issue 1, pp 111–120 | Cite as

Curative haploidentical BMT in a murine model of X-linked chronic granulomatous disease

  • Yasuo Takeuchi
  • Emiko Takeuchi
  • Takashi Ishida
  • Masafumi Onodera
  • Hiromitsu Nakauchi
  • Makoto Otsu
Original Article

Abstract

Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by defective microbial killing in phagocytes. Long-term prognosis for CGD patients is generally poor, highlighting the need to develop minimally toxic, curative therapeutic approaches. We here describe the establishment of a mouse model in which X-linked CGD can be cured by allogeneic bone marrow transplantation. Using a combination of non-myeloablative-dose total body irradiation and a single injection of anti-CD40 ligand monoclonal antibody, transplantation of whole bone marrow cells achieved long-lasting mixed chimerism in X-linked CGD mice in a haploidentical transplantation setting. Stable mixed chimerism was maintained for up to 1 year even at a low range (<20 % donor cells), indicating induction of donor-specific tolerance. The regimen induced mild myelosuppression without severe acute complications. Stable chimerism was therapeutic, as it suppressed cutaneous granuloma formation in an in vivo test suited for evaluation of treatment efficacy in murine CGD models. These results warrant future development of a simplified allogeneic hematopoietic cell transplantation regimen that would benefit CGD patients by allowing the use of haploidentical donor grafts without serious concerns of severe treatment-related toxicity.

Keywords

Chronic granulomatous disease Haploidentical hematopoietic cell transplantation Non-myeloablative conditioning Anti-CD40 ligand therapy Tolerance 

Notes

Acknowledgments

We thank Dr. A. S. Knisely for critical reading of the manuscript, Dr. Michiko Abe for the Aspergillus fumigatus debris suspension, Dr. Yasuteru Urano for fluorescent probes and his technical advice, Dr. Yasunori Ota for histopathological analysis, and Dr. Masanori Nojima for statistical analysis. This work was supported in part of by a JSPS KAKENHI Grant-in-Aid for Yasuo Takeuchi and Makoto Otsu, and by grants from the Ministry of Health, Labor and Welfare and National Center for Child Health and Development (M. Onodera).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (MOV 1939 kb)

Supplementary material 2 (MOV 1469 kb)

12185_2015_1799_MOESM3_ESM.doc (54 kb)
Supplementary material 3 (DOC 54 kb)
12185_2015_1799_MOESM4_ESM.tiff (3 kb)
Supplementary material 4 (TIFF 3 kb)
12185_2015_1799_MOESM5_ESM.tiff (8 kb)
Supplementary material 5 (TIFF 8 kb)
12185_2015_1799_MOESM6_ESM.tiff (27.7 mb)
Supplementary material 6 (TIFF 28327 kb)
12185_2015_1799_MOESM7_ESM.tiff (222 kb)
Supplementary material 7 (TIFF 222 kb)

References

  1. 1.
    Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine. 2000;79(3):155–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Holland SM. Chronic granulomatous disease. Clin Rev Allergy Immunol. 2010;38(1):3–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Seger RA. Advances in the diagnosis and treatment of chronic granulomatous disease. Curr Opin Hematol. 2011;18(1):36–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuijpers T, Lutter R. Inflammation and repeated infections in CGD: two sides of a coin. Cell Mol Life Sci. 2012;69(1):7–15.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lindahl JA, Williams FH, Newman SL. Small bowel obstruction in chronic granulomatous disease. J Pediatr Gastroenterol Nutr. 1984;3(4):637–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med. 1997;185(2):207–18.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ahlin A, Fugelang J, de Boer M, Ringden O, Fasth A, Winiarski J. Chronic granulomatous disease-haematopoietic stem cell transplantation versus conventional treatment. Acta Paediatr. 2013;102(11):1087–94.PubMedGoogle Scholar
  8. 8.
    Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127(6):1319–26 (quiz 27–28).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Maeda Y. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses. Int J Hematol. 2013;98(3):293–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Paczesny S, Raiker N, Brooks S, Mumaw C. Graft-versus-host disease biomarkers: omics and personalized medicine. Int J Hematol. 2013;98(3):275–92.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kikuta A, Ito M, Mochizuki K, Akaihata M, Nemoto K, Sano H, et al. Nonmyeloablative stem cell transplantation for nonmalignant diseases in children with severe organ dysfunction. Bone Marrow Transplant. 2006;38(10):665–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Gozdzik J, Pituch-Noworolska A, Skoczen S, Czogala W, Wedrychowicz A, Baran J, et al. Allogeneic haematopoietic stem cell transplantation as therapy for chronic granulomatous disease—single centre experience. J Clin Immunol. 2011;31(3):332–7.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gungor T, Halter J, Klink A, Junge S, Stumpe KD, Seger R, et al. Successful low toxicity hematopoietic stem cell transplantation for high-risk adult chronic granulomatous disease patients. Transplantation. 2005;79(11):1596–606.PubMedCrossRefGoogle Scholar
  14. 14.
    Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI, et al. Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med. 2001;344(12):881–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Hasegawa D, Fukushima M, Hosokawa Y, Takeda H, Kawasaki K, Mizukami T, et al. Successful treatment of chronic granulomatous disease with fludarabine-based reduced-intensity conditioning and unrelated bone marrow transplantation. Int J Hematol. 2008;87(1):88–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Takeuchi Y, Ito H, Kurtz J, Wekerle T, Ho L, Sykes M. Earlier low-dose TBI or DST overcomes CD8+ T-cell-mediated alloresistance to allogeneic marrow in recipients of anti-CD40L. Am J Transplant. 2004;4(1):31–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995;9(2):202–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem. 2003;278(5):3170–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Tomita Y, Sachs DH, Khan A, Sykes M. Additional monoclonal antibody (mAB) injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation. 1996;61(3):469–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Petersen JE, Hiran TS, Goebel WS, Johnson C, Murphy RC, Azmi FH, et al. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. J Invest Dermatol. 2002;118(3):424–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Durham MM, Bingaman AW, Adams AB, Ha J, Waitze SY, Pearson TC, et al. Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J Immunol. 2000;165(1):1–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Wekerle T, Kurtz J, Ito H, Ronquillo JV, Dong V, Zhao G, et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med. 2000;6(4):464–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M. Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes. 2004;53(2):376–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Takeuchi E, Shinohara N, Takeuchi Y. Cognate interaction plays a key role in the surveillance of autoreactive B cells in induced mixed bone marrow chimerism in BXSB lupus mice. Autoimmunity. 2011;44(5):363–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Grez M, Reichenbach J, Schwable J, Seger R, Dinauer MC, Thrasher AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther. 2011;19(1):28–35.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hoenig M, Niehues T, Siepermann K, Jacobsen EM, Schutz C, Furlan I, et al. Successful HLA haploidentical hematopoietic SCT in chronic granulomatous disease. Bone Marrow Transplant. 2014;49(10):1337–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordigoni P, Di Bartolomeo P, et al. Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985–2000. Blood. 2002;100(13):4344–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Martinez CA, Shah S, Shearer WT, Rosenblatt HM, Paul ME, Chinen J, et al. Excellent survival after sibling or unrelated donor stem cell transplantation for chronic granulomatous disease. J Allergy Clin Immunol. 2012;129(1):176–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Soncini E, Slatter MA, Jones LB, Hughes S, Hodges S, Flood TJ, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol. 2009;145(1):73–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Schuetz C, Hoenig M, Schulz A, Lee-Kirsch MA, Roesler J, Friedrich W, et al. Successful unrelated bone marrow transplantation in a child with chronic granulomatous disease complicated by pulmonary and cerebral granuloma formation. Eur J Pediatr. 2007;166(8):785–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Dinauer MC, Gifford MA, Pech N, Li LL, Emshwiller P. Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood. 2001;97(12):3738–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Sykes M. Mixed chimerism and transplant tolerance. Immunity. 2001;14(4):417–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Fehr T, Takeuchi Y, Kurtz J, Wekerle T, Sykes M. Early regulation of CD8 T cell alloreactivity by CD4+ CD25- T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation. Eur J Immunol. 2005;35(9):2679–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Kurtz J, Shaffer J, Lie A, Anosova N, Benichou G, Sykes M. Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood. 2004;103(11):4336–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Wekerle T, Sayegh MH, Hill J, Zhao Y, Chandraker A, Swenson KG, et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med. 1998;187(12):2037–44.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003;48(3):719–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Patel VL, Schwartz J, Bussel JB. The effect of anti-CD40 ligand in immune thrombocytopenic purpura. Br J Haematol. 2008;141(4):545–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6(2):114.CrossRefGoogle Scholar
  40. 40.
    Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Davila M, Langer F, et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J Immunol. 2010;185(3):1577–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Xie JH, Yamniuk AP, Borowski V, Kuhn R, Susulic V, Rex-Rabe S, et al. Engineering of a novel anti-CD40L domain antibody for treatment of autoimmune diseases. J Immunol. 2014;192(9):4083–92.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2015

Authors and Affiliations

  • Yasuo Takeuchi
    • 1
    • 2
  • Emiko Takeuchi
    • 2
  • Takashi Ishida
    • 3
    • 5
  • Masafumi Onodera
    • 4
  • Hiromitsu Nakauchi
    • 5
  • Makoto Otsu
    • 5
    • 6
  1. 1.Division of Nephrology, Department of Internal MedicineKitasato University School of MedicineSagamiharaJapan
  2. 2.Department of ImmunologyKitasato University School of MedicineSagamiharaJapan
  3. 3.Department of HematologyKitasato University School of MedicineSagamiharaJapan
  4. 4.Department of Human GeneticsNational Center for Child Health and DevelopmentTokyoJapan
  5. 5.Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  6. 6.Stem Cell Bank and Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations