Skip to main content

Advertisement

Log in

ABL tyrosine kinase inhibitor-induced pulmonary alveolar proteinosis in chronic myeloid leukemia

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the accumulation of eosinophilic periodic acid Schiff-positive material in the intra-alveolar and bronchiolar spaces. Tyrosine kinase inhibitors, including imatinib, nilotinib, and dasatinib, have shown excellent efficacy in the treatment of chronic myeloid leukemia (CML). We report a case of acquired PAP in a patient with CML receiving tyrosine kinase inhibitors. A 67-year-old man with CML presented with progressive back pain 5 months after starting imatinib treatment. Acquired PAP was diagnosed based on physical, radiographic, and histopathological findings. The presence of granulocyte-macrophage colony-stimulating autoantibodies suggested that autoimmune mechanisms were involved in the pathogenesis. Interestingly, PAP developed in association with imatinib and dasatinib administration, but not with nilotinib treatment. The patient died of refractory leukemia in lymphoid blast crisis with a newly emerged T315I mutation. Although the incidence is very rare, imatinib and dasatinib associated with PAP development has been reported. Meanwhile, PAP in nilotinib-treated patients has not been reported. Our observation in one patient receiving multiple TKIs suggests that nilotinib may be safer than imatinib or dasatinib in avoiding the development or exacerbation of PAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Jabbour EJ, Cortes JE, Kantarjian HM. Tyrosine kinase inhibition: a therapeutic target for the management of chronic-phase chronic myeloid leukemia. Expert Rev Anticancer Ther. 2013;13:1433–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kimura S, Ando T, Kojima K. Ever-advancing chronic myeloid leukemia treatment. Int J Clin Oncol. 2014;19:3–9.

    Article  CAS  PubMed  Google Scholar 

  3. Trask PC, Mitra D, Iyer S, Candrilli SD, Kaye JA. Patterns and prognostic indicators of response to CML treatment in a multi-country medical record review study. Int J Hematol. 2012;95:535–44.

    Article  PubMed  Google Scholar 

  4. Khan A, Agarwal R. Pulmonary alveolar proteinosis. Respir Care. 2011;56:1016–28.

    Article  PubMed  Google Scholar 

  5. Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010;135:223–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ohmachi K, Ogiya D, Morita F, Kojima M, Tsuboi K, Tazume K, et al. Secondary pulmonary alveolar proteinosis in a patient with chronic myeloid leukemia in the accelerated phase. Tokai J Exp Clin Med. 2008;33:146–9.

    PubMed  Google Scholar 

  7. Wagner U, Staats P, Moll R, Feek U, Vogelmeier C, Groneberg DA. Imatinib-associated pulmonary alveolar proteinosis. Am J Med. 2003;115:674.

    Article  PubMed  Google Scholar 

  8. Chung JH, Pipavath SJ, Myerson DH, Godwin D. Secondary pulmonary alveolar proteinosis: A confusing and potentially serious complication of hematological malignancy. J Thorac Imaging. 2009;24:115–8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ben-Dov I, Segel MJ. Autoimmune pulmonary alveolar proteinosis: clinical course and diagnostic criteria. Autoimmun Rev. 2014;13:513–7.

    Article  CAS  PubMed  Google Scholar 

  10. Borie R, Debray MP, Laine C, Aubier M, Crestani B. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur Respir J. 2009;33:1503–6.

    Article  CAS  PubMed  Google Scholar 

  11. Al Sobhi E, Zahrani Z, Zevallos E, Zuraiki A. Imatinib-induced immune hepatitis: case report and literature review. Hematology. 2007;12(1):49–53 PubMed PMID: 17364993.

    Article  PubMed  Google Scholar 

  12. Rea D, Bergeron A, Fieschi C, Bengoufa D, Oksenhendler E, Dombret H. Dasatinib-induced lupus. Lancet. 2008;372:713–4.

    Article  PubMed  Google Scholar 

  13. Dewar AL, Doherty KV, Hughes TP, Lyons AB. Imatinib inhibits the functional capacity of cultured human monocytes. Immunol Cell Biol. 2005;83:48–56 PubMed PMID: 15661041.

    Article  CAS  PubMed  Google Scholar 

  14. Bunda S, Kang MW, Sybingco SS, Weng J, Favre H, Shin DH, et al. Inhibition of SRC corrects GM-CSF hypersensitivity that underlies juvenile myelomonocytic leukemia. Cancer Res. 2013;73:2540–50.

    Article  CAS  PubMed  Google Scholar 

  15. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13:559–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Harbaum L, Marx A, Goekkurt E, Schafhausen P, Atanackovic D. Treatment with dasatinib for chronic myeloid leukemia following imatinib-induced hepatotoxicity. Int J Hematol. 2014;99:91–4.

    Article  CAS  PubMed  Google Scholar 

  17. Ito Y, Miyamoto T, Chong Y, Maki T, Akashi K, Kamimura T. Nilotinib exacerbates diabetes mellitus by decreasing secretion of endogenous insulin. Int J Hematol. 2013;97:135–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ito K, Iwabe K, Okai T, Kouda S, Tadokoro M, Isiko T. Rapidly progressive pulmonary alveolar proteinosis in a patient with chronic myelogenous leukemia. Intern Med. 1994;33:710–3.

    Article  CAS  PubMed  Google Scholar 

  19. Latagliata R, Breccia M, Fava C, Stagno F, Tiribelli M, Luciano L, et al. Incidence, risk factors and management of pleural effusions during dasatinib treatment in unselected elderly patients with chronic myelogenous leukaemia. Hematol Oncol. 2013;31:363–9.

    Article  CAS  Google Scholar 

  20. Quintás-Cardama A, Kantarjian H, O’brien S, Borthakur G, Bruzzi J, Munden R, et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol. 2007;25:3908–14.

    Article  PubMed  Google Scholar 

  21. Kelly K, Swords R, Mahalingam D, Padmanabhan S, Giles FJ. Serosal inflammation (pleural and pericardial effusions) related to tyrosine kinase inhibitors. Target Oncol. 2009;4:99–105.

    Article  PubMed  Google Scholar 

  22. Sakagami T, Beck D, Uchida K, Suzuki T, Carey BC, Nakata K, et al. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med. 2010;182:49–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE, Doyle IR, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med. 2001;163(2):524–31.

    Article  CAS  PubMed  Google Scholar 

  24. Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open-label trial of granulocyte macrophage colony stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest. 2006;130:227–37.

    Article  CAS  PubMed  Google Scholar 

  25. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181:1345–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ohashi K, Sato A, Takada T, Arai T, Kasahara Y, Hojo M, et al. Reduced GM-CSF autoantibody in improved lung of autoimmune pulmonary alveolar proteinosis. Eur Respir J. 2012;39:777–80.

    Article  CAS  PubMed  Google Scholar 

  27. Balleari E, Bason C, Visani G, Gobbi M, Ottaviani E, Ghio R. Serum levels of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in treated patients with chronic myelogenous leukemia in chronic phase. Haematologica. 1994;79:7–12.

    CAS  PubMed  Google Scholar 

  28. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW, et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL + progenitors via JAK-2/STAT-5 pathway activation. Blood. 2007;109:2147–55.

    Article  CAS  PubMed  Google Scholar 

  29. Leth S, Bendstrup E, Vestergaard H, Hilberg O. Autoimmune pulmonary alveolar proteinosis: treatment options in year 2013. Respirology. 2013;18:82–91.

    Article  PubMed  Google Scholar 

  30. Breccia M, Martelli M, Cannella L, Russo E, Finolezzi E, Stefanizzi C, et al. Rituximab associated to imatinib for coexisting therapy-related chronic myeloid leukaemia and relapsed non-Hodgkin lymphoma. Leuk Res. 2008;32:353–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Shinya Kimura received research grants and lecture fees from Bristol-Myers Squibb and Novartis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Kojima.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimura, M., Kojima, K., Tomimasu, R. et al. ABL tyrosine kinase inhibitor-induced pulmonary alveolar proteinosis in chronic myeloid leukemia. Int J Hematol 100, 611–614 (2014). https://doi.org/10.1007/s12185-014-1666-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-014-1666-z

Keywords

Navigation