Skip to main content
Log in

No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Nuclear factor-kappa B (NF-κB) is a multipotent transcription factor that plays a pivotal role in immune reactions, inflammation, and possibly hematopoiesis as well. Mobilization of neutrophilic granulocytes during inflammation is a highly regulated process, but one that is incompletely understood. We studied the in vivo activity of NF-κB in mouse organs and cells, with a focus on bone marrow, during acute inflammation. NF-κB activity was studied in transgenic mice expressing a luciferase reporter expressed in a NF-κB activation-dependent fashion. Acute peritoneal inflammation was induced by lipopolysaccharide (LPS), the casein digest bacto-tryptone, or the insoluble polysaccharide zymosan. Organs were removed and blood, bone marrow, and peritoneal cells were separated using density gradient centrifugation. NF-κB activity in organ homogenates and cell lysates was quantified. These three inflammatory agents increased NF-κB activity to a variable extent within the inflamed peritoneal cavity, liver, and spleen, with LPS being the strongest stimulus. LPS, but not bacto-tryptone or zymosan, activated NF-κB in lung and bone marrow, the latter activity mainly observed in density fractions rich in immature bone marrow cells. NF-κB activation was prominent at 6 h after induction of peritonitis, fading at 24 h, as expected for an acute phase phenomenon. From this proof-of-principle study with luciferase reporter mice dependent on NF-κB activation, we suggest that, in steady-state mice, mobilization of bone marrow granulocytes to an inflammatory site can occur without discernible activation of NF-κB in bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013;34:398–409.

    Article  CAS  PubMed  Google Scholar 

  2. Benestad HB, Laerum OD. The neutrophilic granulocyte. Curr Top Pathol. 1989;79:7–36.

    Article  CAS  PubMed  Google Scholar 

  3. Pasparakis M. Role of NF-kappaB in epithelial biology. Immunol Rev. 2012;246:346–58.

    Article  PubMed  Google Scholar 

  4. Oh H, Ghosh S. NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. Immunol Rev. 2013;252:41–51.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Liou HC. Regulation of the immune system by NF-kappaB and IkappaB. J Biochem Mol Biol. 2002;35:537–46.

    Article  CAS  PubMed  Google Scholar 

  6. Bottero V, Withoff S, Verma IM. NF-kappaB and the regulation of hematopoiesis. Cell Death Differ. 2006;13:785–97.

    Article  CAS  PubMed  Google Scholar 

  7. Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ. NF-kappaB subunit specificity in hemopoiesis. Immunol Rev. 2012;246:272–85.

    Article  PubMed  Google Scholar 

  8. Hamilton T, Novotny M, Pavicic PJ Jr, Herjan T, Hartupee J, Sun D, Zhao C, Datta S. Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. Cytokine. 2010;52:116–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Knudsen E, Iversen PO, Van Rooijen N, Benestad HB. Macrophage-dependent regulation of neutrophil mobilization and chemotaxis during development of sterile peritonitis in the rat. Eur J Haematol. 2002;69:284–96.

    Article  CAS  PubMed  Google Scholar 

  10. Davis GE, Thomas JS, Madden S. The α4β1 integrin can mediate leukocyte adhesion to casein and denatured protein substrates. J Leukoc Biol. 1997;62:318–28.

    CAS  PubMed  Google Scholar 

  11. Tobita K, Kawahara T, Otani H. Bovine beta-casein (1-28), a casein phosphopeptide, enhances proliferation and IL-6 expression of mouse CD19+ cells via Toll-like receptor 4. J Agric Food Chem. 2006;54:8013–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cash JL, White GE, Greaves DR. Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. Methods Enzymol. 2009;461:379–96.

    Article  CAS  PubMed  Google Scholar 

  14. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327:291–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R. In vivo imaging of NF-kappa B activity. J Immunol. 2002;168:1441–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98:387–96.

    Article  CAS  PubMed  Google Scholar 

  17. Fujieda Y, Manno A, Hayashi Y, Rhodes N, Guo L, Arita M, Bamba T, Fukusaki E. Inflammation and resolution are associated with upregulation of fatty acid β-oxidation in Zymosan-induced peritonitis. PLoS One. 2013;8:e66270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang X, Fjerdingstad H, Strom-Gundersen I, Benestad HB. Maturation rate of mouse neutrophilic granulocytes: acceleration by retardation of proliferation, but no detectable influence from G-CSF or stromal cells. Stem Cells. 1999;17:253–64.

    Article  PubMed  Google Scholar 

  19. Lentsch AB, Ward PA. Regulation of experimental lung inflammation. Respir Physiol. 2001;128:17–22.

    Article  CAS  PubMed  Google Scholar 

  20. Mizgerd JP. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol. 2002;14:123–32.

    Article  CAS  PubMed  Google Scholar 

  21. Ratner AJ, Lysenko ES, Paul MN, Weiser JN. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci USA. 2005;102:3429–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen SM, Cheng DS, Williams BJ, Sherrill TP, Han W, Chont M, Saint-Jean L, Christman JW, Sadikot RT, Yull FE, Blackwell TS. The nuclear factor kappa-B pathway in airway epithelium regulates neutrophil recruitment and host defence following Pseudomonas aeruginosa infection. Clin Exp Immunol. 2008;153:420–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Witowski J, Ksiazek K, Warnecke C, Kuzlan M, Korybalska K, Tayama H, Wisniewska-Elnur J, Pawlaczyk K, Trominska J, Breborowicz A, Jorres A. Role of mesothelial cell-derived granulocyte colony-stimulating factor in interleukin-17-induced neutrophil accumulation in the peritoneum. Kidney Int. 2007;71:514–25.

    Article  CAS  PubMed  Google Scholar 

  24. Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K, Inohara N, Nunez G. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol. 2007;179:514–21.

    Article  CAS  PubMed  Google Scholar 

  25. Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF, Williams IR, Neish AS, Madara JL. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol. 2002;168:5260–7.

    Article  CAS  PubMed  Google Scholar 

  26. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178:3912–7.

    Article  CAS  PubMed  Google Scholar 

  27. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci USA. 1999;96:11848–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. von Vietinghoff S, Asagiri M, Azar D, Hoffmann A, Ley K. Defective regulation of CXCR2 facilitates neutrophil release from bone marrow causing spontaneous inflammation in severely NF-kappa B-deficient mice. J Immunol. 2010;185:670–8.

    Article  Google Scholar 

  29. Mankan AK, Canli O, Schwitalla S, Ziegler P, Tschopp J, Korn T, Greten FR. TNF-α-dependent loss of IKKβ-deficient myeloid progenitors triggers a cytokine loop culminating in granulocytosis. Proc Natl Acad Sci USA. 2011;108:6567–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland JB, Borregaard N. The transcriptional program of terminal granulocytic differentiation. Blood. 2005;105:1785–96.

    Article  PubMed  Google Scholar 

  31. Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBPα expression and inflammatory cytokine-induced neutrophil production. J Immunol. 2009;182:5757–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang J, Li Y, Yu M, Chen B, Shen B. Lineage-dependent NF-kappaB activation contributes to the resistance of human macrophages to apoptosis. Hematol J. 2003;4:277–84.

    Article  PubMed  Google Scholar 

  33. Kato T, Kitagawa S. Regulation of neutrophil functions by proinflammatory cytokines. Int J Hematol. 2006;84:205–9.

    Article  CAS  PubMed  Google Scholar 

  34. Knudsen E, Iversen PO, Boyum A, Seierstad T, Nicolaysen G, Benestad HB. G-CSF enhances the proliferation and mobilization, but not the maturation rate, of murine myeloid cells. Eur J Haematol. 2011;87:302–11.

    Article  CAS  PubMed  Google Scholar 

  35. Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E, Kobor MS, Reader BF, Sheridan JF, Cole SW. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proc Natl Acad Sci USA. 2013;110:16574–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Inger Strøm-Gundersen and Lene Gilen for their technical assistance. Grants were provided from the Norwegian Cancer Society, the Grethe Harbitz Legacy, the Legacy of Henrik Homan’s Minde, and Anders Jahre’s Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Ole Iversen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudsen, E., Carlsen, H., Bøyum, A. et al. No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse. Int J Hematol 100, 111–118 (2014). https://doi.org/10.1007/s12185-014-1598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-014-1598-7

Keywords

Navigation